12E – Early Math Counts https://earlymathcounts.org Laying the foundation for a lifetime of achievement Thu, 26 Aug 2021 18:09:38 +0000 en-US hourly 1 183791774 Playing with Sticks https://earlymathcounts.org/playing-with-sticks/ https://earlymathcounts.org/playing-with-sticks/#comments Mon, 05 Oct 2020 12:33:48 +0000 https://mathathome.org/?p=12266   If you’ve been fortunate enough to visit The Morton Arboretum in Lisle, Illinois, or driven by the Arboretum on Interstate 88, you may have spotted Joe the Guardian, a 20-foot-tall, spear-wielding troll peering down at the passing cars from atop his grassy berm. Joe is just one of six towering troll statues created by […]]]>

 

If you’ve been fortunate enough to visit The Morton Arboretum in Lisle, Illinois, or driven by the Arboretum on Interstate 88, you may have spotted Joe the Guardian, a 20-foot-tall, spear-wielding troll peering down at the passing cars from atop his grassy berm. Joe is just one of six towering troll statues created by Danish artist Thomas Dambo. Fashioned from repurposed wood and other natural materials foraged from the Arboretum’s vast acreage, these incredibly detailed trolls have been delighting and inspiring visitors of all ages since they were installed as a temporary exhibition in Spring 2018. 

I like to say that Dambo never lost his childhood love of playing with loose parts. If you’ve followed my blog, you know about my own passion for using loose parts in early childhood classrooms! Some of our students have been fortunate enough to visit the trolls on weekends—and they are always eager to share their tall troll tales with their friends on Monday mornings.

Here’s some rare good news in a year that has had more than its share of bad news: The pandemic that has interrupted life as we know it has also put a pause on the trolls moving on!  If you have a chance to visit the Morton Arboretum before the end of the year, it’s worth a trip. Turn off those screens, get out of the house and breathe in some fresh air. This is STEAM learning in action that will inspire your own loose-parts play!

East Side Troll - Picture of Morton Arboretum, Lisle - Tripadvisor

The Troll Hunt features a collection of trolls constructed from reclaimed wood. But these woody behemoths are 15 to 30 feet tall—a bit more than our gang is capable of constructing. Creating more diminutive trolls is definitely more our speed.

After several weeks of Monday-morning reports of troll sightings at the Arboretum, I took advantage of the trend. First, I printed out photos of the trolls to inspire our early learners to create their own versions of these mythical woodland creatures. Next, we sorted all of our loose parts into baskets and small bowls. Then we created trolls of various shapes and sizes out of small sticks, tree cookies, leaves, buckeyes, corks, shells and fabric—using bits of clay to connect the loose parts.

Architect Simon Nicholson first introduced the concept of loose parts back in the 1970s. Nicholson believed that we are all creative and that loose parts inspire children to engage in experimental, creative play, which is beneficial for child development.

What exactly are loose parts? They are materials that can be moved, carried, combined, redesigned, lined up and taken apart and put back together in multiple ways. They are materials with no specific set of directions that can be used alone or combined with other materials. (Kabel, 2010)

We like to think of loose parts as shells, rocks, sticks, acorns, feathers, pinecones, flowers, flower petals, fabric, water, sand, dirt, moss, leaves, bark, rocks, pebbles, pine needles, seeds and whatever else is native to your region. But we can also use blocks, people, animals and other manipulatives. Loose parts can range from dramatic play props to toy cars, pots, pans or pouring devices.

After studying the photos to determine the materials that were used to create the trolls at the Arboretum, the children noted that the hair on Dambo’s trolls was made from branches and observed the intricate detail on the troll faces and toenails.

Then they began to build their own trolls. At first, the children created two-dimensional trolls. But, as the troll workshop continued and they became more confident and creative in their use of loose parts, they began building in three dimensions.

     

“I need a leg that is the same size as his arms! See? These legs are too little!”

Jamie was not happy with his troll’s appearance. Digging through the bowl of small twigs, he discovered a longer “leg” and kept digging until he found another that satisfied him. Jamie was busy measuring, sorting and comparing his loose parts, employing nonstandard units of measurement. Sure enough, he was knocking out those early learning standards through play once more! This was a morning spent exploring concepts such as symmetry, geometric shapes and spatial awareness (how things fit in front, behind, next to or underneath something). Recognizing, predicting and building patterns are all important early math and science skills that lay the foundation for later STEM and STEAM learning.

As they engaged in these simple experiences, the children were becoming more proficient at problem-solving, reasoning, predicting and making connections in the world around them. By creating these opportunities for children to see the world through a different lens as they play with loose parts, we open up new avenues of exploration and discovery.

“Sally, you are using shells for your troll’s eyes,” Noa pointed out to her friend. “I used pine cones!”

By observing, asking questions and drawing conclusions, children develop scientific skills. Comparing and describing physical properties while creating their trolls allowed our young learners to think out loud and try out new ideas. When the children weren’t satisfied with how something looked, they would often rearrange the loose parts or start all over again. There was no anger or frustration—just calm exploration.

“Where did you find that grassy stuff for your hair?” Noa asked Sally. But Sally was deep in a state of creative flow. Sally often incorporates fabric into her creations and proceeds more slowly than her peers. But she is very deliberate about her choices. All of this takes time. We don’t need to look at the clock and decide when this activity should end. We can let the children decide. On this fall morning, the troll table sparked a play buzz that lasted for more than two hours as our troll makers followed their curiosity, becoming more confident as they took advantage of new opportunities to engage in art, math and science.

We rarely take walks without bringing home all kinds of loose parts—what the children refer to as “treasures.” If your child keeps small items in containers to create “things” with, your child is playing with loose parts! Take advantage of what you have around you. Those are your tools for setting up a math- and science-rich environment.

If you haven’t experienced the Troll Hunt at the Morton Arboretum, autumn is a great time to visit the Arboretum’s beautiful grounds and maybe find some loose parts along the way. Just be sure to call first to make an appointment, as the Arboretum is enforcing social-distancing measures to ensure visitors’ safety. Don’t forget to check into a membership when you pay for admission. That membership is your ticket to a full year of adventures at more than 300 gardens around the United States. It is a great investment or gift idea. Consider it a year of math and science curriculum as we hit the pause button on life to collect loose parts and scout out those magical, mythical trolls. Happy hunting!

]]>
https://earlymathcounts.org/playing-with-sticks/feed/ 16 12266
Fort Building 101 https://earlymathcounts.org/fort-building-101/ https://earlymathcounts.org/fort-building-101/#comments Fri, 16 Apr 2021 01:06:57 +0000 https://mathathome.org/?p=12272   “LOOK!” screams a four-year-old with such joy that we know this isn’t a garden-variety “I want to share something with you” moment. As the gang rushes to her side, they come to a complete standstill, frozen in awe. Oh happy day! Some kind souls have shared a fort with the community! There before us […]]]>

 

“LOOK!” screams a four-year-old with such joy that we know this isn’t a garden-variety “I want to share something with you” moment.

As the gang rushes to her side, they come to a complete standstill, frozen in awe.

Oh happy day! Some kind souls have shared a fort with the community! There before us stands the most wonderful teepee-shaped fort that we have ever seen. Forts have been popping up all over town this year—and I couldn’t be happier about this trend.

This 14-foot high monument has sparked wonder and curiosity in all of us. We have stumbled upon a STEM adventure! This is math, science and engineering play that allows the learning to come naturally and at each child’s developmental level. This is also sharing. It teaches children that our community creates beautiful spaces to be enjoyed by all.

“Who lives here?” asks Liam as he bravely ventures closer.

“Can we go in?” questions three-year-old Madison, not sure that she really wants to.

We do go in, and the investigation into fort building sets us in motion for the day. Do you remember building forts when you were a kid? Did the memory of that fort just resurface? If it did, you retained that memory and are likely able to build another.

These are the moments that we like to create for our early learners. Hands-on learning enables children to take their understanding to a deeper level so that they can analyze the information that they have collected and then apply this knowledge when they create their own forts.

After giving everyone a turn to observe and discuss the masterpiece in front of us, we take a good hard look at the fort and investigate how it was constructed so that we can build a fort of our own.

We discovered this fort (above) while hiking in our neighborhood.

“I think this fort was started from that fallen branch!” Harper hypothesizes.

This leads to closer observation as we determine that this fort has sides that were built with sticks ranging in size from large to small. By leaning them against the main branch, the architects made the fort longer and wider. We begin to get a better sense of measurement as we visually estimate the length and width of the fort.

We always add a few sticks or branches to any fort that we discover, and today is no different. The older children quickly begin to add branches—an activity that reinforces our perception of the fort as a communal structure. When our younger learners hesitate, we reassure them that they really can’t go wrong by adding a stick or two.

“It looks like a triangle!” shouts Elizabeth. This declaration leads to an animated discussion about shapes and ways to incorporate doors, windows and other shapes into our fort.

We have a geometry class happening before our very eyes! We are looking at two- and three-dimensional shapes and using visualization, spatial reasoning and geometric modeling to solve problems.

These are opportunities that are rich in learning, creativity and team building. We share theories and develop hypotheses about the number of people it might have taken to build the fort, how they got the biggest branches up so high and how they created a base to stabilize the entire structure. We also examine the bottoms of the branches and hypothesize that they were probably broken off during a storm, rather than cut cleanly with a saw.

        

We know that our forts won’t look like the ones that we’ve encountered. We’ll have to use whatever materials we can find in our own play spaces. But our observations give us a better understanding of the fundamentals of fort and teepee construction. These found structures are the spark of inspiration that we need to design a fort of our own!

It’s time to bring out the assessment chart because this gang is on fire! This playful experience in engineering involves concepts such as angles, inclines, balance and elevation. When we let children learn through play, movement and trial and error, we lay the groundwork for the kind of deep learning that builds new neural connections.

Once the seeds are planted, the children often continue to develop their fort-building skills in our program or in their own backyards.

When the Midwest experienced a rare derecho in August 2020—and every house in our area suddenly had a backyard full of branches—our students immediately began collecting the fallen branches to build forts in their neighborhoods.

They had joined the community-wide fort-building movement!

Notice the similarities? By giving our children long periods of uninterrupted time to play and investigate, we empower them to build their own forts and develop new STEM skills and insights that they will be able to transfer to worksheets when the time is right.

When our students returned to our program this fall, we began napping outdoors on a daily basis. Not surprisingly, when a parent suggested a weekend nap to their child, the child insisted on napping outdoors—in her fort. When children build structures, the joy comes not only from the building but from returning to this place that they have created by themselves, for themselves.

These are the moments when I thank our anonymous community of fort builders for “planting the seeds” of fort building with our young learners. These industrious fort architects may be 12 years old or 90 years old. They may be building these impromptu structures to offer protection from the weather, bring joy to others or simply provide a peaceful place for fellow community members to commune with the natural world.

These lovely forts are gifts of time, hard work and beautiful design that bring science, math and engineering into the lives of our youngest citizens.

Thank you for making so many moments of STEM learning possible through play with the children of our community! You inspire all of us! Thank you! You are truly changing our world!

 

 

 

 

 

]]>
https://earlymathcounts.org/fort-building-101/feed/ 9 12272
Frosty the STEM Snowman https://earlymathcounts.org/frosty-the-stem-snowman/ https://earlymathcounts.org/frosty-the-stem-snowman/#comments Tue, 01 Dec 2020 11:50:44 +0000 http://earlymathcounts.org/?p=26396 “Look! The snow packs!  Let’s make a snowman!” Today’s sunshine and rising temperatures have transformed yesterday’s powdery snow into packable fun—ushering in an afternoon of playful math and science learning. These are the times when I love to pull out my camera to document the many foundation-building moments that find their way into our play. […]]]>

“Look! The snow packs!  Let’s make a snowman!”

Today’s sunshine and rising temperatures have transformed yesterday’s powdery snow into packable fun—ushering in an afternoon of playful math and science learning.

These are the times when I love to pull out my camera to document the many foundation-building moments that find their way into our play. This documentation allows us to reflect on the learning, conversations and collaborations that take place—and the theories that the children develop—as they explore and investigate their environment.

So grab a mug of hot cider and join us as we unpack all of the early learning opportunities that can be checked off of your list of assessment standards during a snowy afternoon of outdoor play.

“We need three balls!” yells Hudson. “One for his head, one for the middle and one for the bottom!” Hudson has stepped up to serve as the lead architect during this day of snowman construction.

 “We need three sizes,” Jameson pipes in. “Big, bigger and even bigger!”

  “Yes, and the biggest is at the bottom,” adds Noah.

“You start out like this,” Noah explains as she packs together a small pile of snow. ”You push it and roll it and it gets bigger and bigger. Then you have to pack it down. But not too hard. If you pack too hard, it falls apart.”

As I listen in, I seize various opportunities to introduce some STEM vocabulary into our play. We discuss cause and effect, friction and experiments. I don’t expect these words to start flowing off of the children’s lips any time soon, but I never miss an opportunity to plant the seeds of knowledge in their developing brains.

“Mine looks like a square,” Jameson complains to no one in particular.

“If you rub it here just a little and chop this side a little bit, you will make a circle,” advises Avery, who is a wee bit older and more experienced in the intricacies of snowman construction.

I watch as the children form the snow into balls of different shapes and sizes. I hear vocabulary words such as “bigger,” “taller” and “heavier” as the older children compare the different snowball sizes and help me stack them one on top of the other to form snow people.  

“We need two eyes and a carrot nose and buttons for the mouth,” the children shout. “We need a hat to put on top and two branches for his arms! He needs a hat and a scarf!”

For years, the needs of my little “snow sculptors” left me scrambling for the items needed to complete their snow people. After three decades of coming up short, I discovered this snowman decorating kit on Amazon.

What a game changer! This affordable kit provides ample opportunities for STEM (and STEAM) learning. Whenever I pull this kit out, the excitement increases and the design process becomes more focused and deliberate. We have patterns and sequence and spatial reasoning. We have order and math vocabulary and collaboration. These are the moments that lead to teamwork, which is such a gift in any learning endeavor. When children work together on a project, it fosters the development of confidence and camaraderie—and culminates in a sense of accomplishment for all.

I keep my snowman kit in a plastic bin so that I know where all of the pieces are and keep the bin handy during the winter months. Every time I pull the kit out and the children scream with delight, I feel like a rock star! If you want to simplify your teaching and incorporate more STEM learning opportunities into your snow days, do yourself a favor and get a snowman kit.

The winter months offer endless opportunities to introduce children to the science behind the season as you explore and discuss environmental changes, physical properties, weather and temperature. You can pack a lot of STEM curriculum and vocabulary into your day by simply allowing your students to spend some time in the elements.

If the thought of getting all of your young snow explorers dressed and out the door feels daunting, check out our blog post, Incorporating Math into Your Cold-Weather Routines. You’ll learn how to set up separate “stations” where the children can don their own snow pants, coats, boots, hats, scarves and mittens. It’s a great system that teaches children about sequencing while encouraging them to become more independent as they gear up for their winter adventures.

It’s going to be a long winter, so bundle up and get some fresh air.  It’s good for the body, the brain and the spirit.

Stay safe my friends!

]]>
https://earlymathcounts.org/frosty-the-stem-snowman/feed/ 15 26396
Finding STEM in Squirming Worms https://earlymathcounts.org/finding-stem-in-squirming-worms/ https://earlymathcounts.org/finding-stem-in-squirming-worms/#comments Thu, 01 Apr 2021 11:49:11 +0000 http://earlymathcounts.org/?p=87918   “AAAAUUUUGHHHHHHH! Worms! Look, look! They are everywhere!” Eleanor is jumping up and down hysterically. Nothing will bring our crew running faster than a good worm sighting! Let the earthworm exploration begin. We love worms! Last spring, we witnessed an unusual natural phenomenon as a mass of earthworms wiggled out of their subterranean homes in […]]]>

 

“AAAAUUUUGHHHHHHH! Worms! Look, look! They are everywhere!” Eleanor is jumping up and down hysterically. Nothing will bring our crew running faster than a good worm sighting!

Let the earthworm exploration begin. We love worms!

Last spring, we witnessed an unusual natural phenomenon as a mass of earthworms wiggled out of their subterranean homes in the soil and squirmed onto our sidewalk.

This weird worm event elicited great joy and excitement from our early learners as they raced over to investigate.

There are a number of names for a large group of earthworms, including a bed, a bunch, a clat or a clew. So if you casually refer to a squirming mass of earthworms as a bunch, you are technically correct!

Why are there so many?  Why are they tangled?  Will they bite me? Where is the worm’s mouth?

The curiosity is flowing faster than the answers. When you see excitement at this level, embrace the moment! Grab a camera and start documenting the Illinois Early Learning Standards that you’ll be meeting today!

Worms can be used to teach length—and we sometimes measure them with tape measures. But this is just one of the ways that worms spark investigation, inquiry and analysis in our outdoor curriculum.

Our love of worms has afforded us days and days of study. In the photo above, you can see collaboration, hypothesizing, theorizing and prediction in action.

This is a group of three-year-old scientific investigators—and their brains are on fire! This is STEM exploration at its most engaging as we measure, count, estimate and subtilize while learning about earth science and life science.

Our students are learning that living things grow and change. They are drawing conclusions from their investigations as they scrutinize the worms’ anatomy and behavior.

This fact-finding mission also fosters a respect for life in all its forms. We try really hard not to hurt our worms. When a two-year-old child engages in hands-on investigations with an earthworm, it doesn’t always end so well for the worm. To protect the worms from overzealous handling, we’ve taught the older children to monitor the well-being of the worms in the hands of their younger peers. This is hands-on learning, coupled with collaboration!

As your early learners explore the world of earthworms, encourage them to ask questions that will guide their investigations. By encouraging them to engage in deeper scientific inquiry, you’ll be setting them up for academic success in the years to come.

“Can I hold it? ” asks two-year-old Alex.

As an older friend passes a worm to Alex, she pulls her hand back a few times before she is ready to receive it.

We offer Alex a glove, but she wants to be like the “big kids” and go gloveless. After we reassure her that the worm has no teeth or pincers, she tries again. This is a good example of the importance of time and patience as we guide children through the investigative process.

People often ask how we “get” our kids to hold a worm. We read a lot of books about worms and I make sure that there are worm books on our shelves from March through October. We also observe worms for long periods of time. If our early learners have one brave friend who is willing to pick up a worm, that’s all it takes to persuade the others to persevere, despite their initial trepidation.

As the children engage in their hands-on worm investigations, we throw out facts, often in whispered voices: “Did you know that worms do not have teeth? Worms also do not have pincers or stingers. They have no eyes, legs or arms. They will never hurt us.”

These are the facts that I share with young learners who are anxious or experiencing worms for the first time. A child who investigated worms as a two-year-old last fall may not have retained that memory as a three-year-old—and we may need to reintroduce worms this spring.

Retention and problem-solving skills continue to evolve as students seek answers to their questions through active investigation. Last fall’s observer may be this spring’s hands-on investigator. Our students need long periods of time to observe and learn as this curriculum unfolds in front of their eyes.

By creating an environment that leads to discovery, you are setting your curriculum in motion. Add large rocks, tree cookies or even soil-filled planters that can serve as worm habitats. Some teachers add soil and worms to their sand and water tables to create worm farms in their classrooms. Our goal is to foster the development of inquisitive minds.

We extend our learning with songs and finger-play. We enjoy “Eat Like a Worm Day” as we snack on vegetables such as carrots, cucumbers, lettuce and apples. We make “worms” out of clay—some thick, some thin, some short and some very, very long.

Mr. Nicky's Science Project

Mr. Nicky (pictured above) has a wonderfully funny song titled “Earthworm,” that has taught our children so much about the vital role that worms play in keeping our soil healthy. There are many silly worm songs, but this has a great hook and gets our children moving as they learn new facts about worms while having fun. It’s one of our favorites.

We always try to return worms to their natural habitat when our observations are over. We thank the worms for doing their part to make our lawn healthy and beautiful as we release them back into the place where we found them. We send them home to their families, which resonates with our young learners.

We wish you many happy STEM adventures as you and your early learners study these champions of the soil.

Happy worm hunting!

]]>
https://earlymathcounts.org/finding-stem-in-squirming-worms/feed/ 9 87918
STEM in the Bird Feeder https://earlymathcounts.org/stem-in-the-bird-feeder/ https://earlymathcounts.org/stem-in-the-bird-feeder/#comments Wed, 10 Feb 2021 13:36:53 +0000 http://earlymathcounts.org/?p=91868

“I see the daddy cardinal, do you know where the mama bird is?” Four-year-old Noah, binoculars in hand, is busy counting birds in our outdoor classroom.

Are you aware that the annual Great Backyard Bird Count is coming up later this week? This is a great opportunity to create a bird-watching station and knock out some STEM and early learning standards while encouraging family involvement.

Mark your calendars for Feb 12-15 and join us for this fun and educational week!

February and March are good months for bird watching and bird counting in our program. This is a great way to accelerate STEM learning on days when below-zero wind chills make outdoor play impossible.

We have bird feeders set up right outside of our windows so that we can set up indoor bird-watching stations to give the children close-up views of their feathered friends.

We provide clipboards, books, binoculars and our abacus to help with the bird count. We also use this opportunity to teach our students how to tally on a tally chart. We reference the eBird website, which shares local sightings of different bird species.

I take the top ten birds sighted in our area on the eBird website and add pictures of those birds to our abacus. To do the same thing, just add your location to the eBird website and you’ll see which birds are sighted most often in your area. It’s quite fabulous!

We also like The Cornell Lab and the Audubon Society. I have the Cornell Lab Merlin Bird ID app on my phone to help us identify birds by their songs.

Your local U.S. Fish and Wildlife Service may also be able to provide free materials for bird identification. There is a big difference between bird identification books for children and those that were written for mature bird watchers. I would check some out at your local library or bookstore before purchasing.

This is a great opportunity to practice not only counting, but grouping by attributes or close observation of the differences between a downy woodpecker and a red-bellied woodpecker.

We try to keep a ruler nearby for our older children to use to determine whether they have spotted a six-inch downy woodpecker or a nine-inch hairy woodpecker. This offers the children an opportunity to use estimation and practice using real tools for observation.

This is also a great time to introduce Venn diagrams for clarification and documentation.

By creating a comfortable and inviting place for the children to birdwatch—complete with pillows, chairs and tables with baskets of binoculars—you can encourage them to slow down and observe more often.

By planting native plants in your outdoor classroom, you will also attract more birds to your bird-watching stations.

We remind our kids that outdoor birds are hard to spot but easy to hear. We ask them to close their eyes and point to where the song is coming from. I like to teach common mnemonics like the American Robin’s cheery up, cheerio, which can be picked up on almost any bird walk in the United States. Learn some mnemonics for common birdsongs here.

We have tried the inexpensive plastic binoculars from school-supply stores and toy aisles. They really didn’t work well and broke the same day that we brought them out. Smaller, child-sized binoculars are much easier for little hands to manage. Children enjoy using “real” tools and will treat them with much more respect than a pair of cheap plastic ones. I often teach them how to focus the binoculars to get a clear image. I place these binoculars in a basket, along with the identification books. We also stock our bookshelves with a wonderful collection of books about birds, nests and hatchlings.

We talk so much about STEM these days. This is one of the easiest and most magical ways to create a learning hub that can inspire young learners to engage in STEM exploration and discovery.

By participating in these learning adventures, you can learn right along with the children as you observe, ask questions, draw conclusions and discuss your findings with your early learners.

When we observe birds from our indoor birdwatching stations and then take those same observational skills outdoors, we have a deeper understanding of the birds we see and the birdsong we hear.

By adding the technology from the websites mentioned above and building bird feeders from oranges or peanut butter and seeds, we can include engineering in our learning adventures. We can include math as we count the number of birds arriving at the feeder and then subtract the birds that fly away. By grouping, measuring and comparing the birds, we can meet our early learning standards and benchmarks.

I hope you will join us in our Great Backyard Bird Count this year. Birds of a feather flock together. Come join the fun!

]]>
https://earlymathcounts.org/stem-in-the-bird-feeder/feed/ 3 91868
A Small Whiff of STEM https://earlymathcounts.org/a-small-whiff-of-stem/ https://earlymathcounts.org/a-small-whiff-of-stem/#comments Sun, 15 Aug 2021 09:47:09 +0000 http://earlymathcounts.org/?p=153443  

“I smell cinnamon rolls!” exclaims Henry as he races through the gate towards our outdoor classroom.

Everyone stops what they are doing to inhale deeply.

“I do too! I want a cinnamon roll!” pleads Noah.

My group is quite disappointed to learn that I am not baking cinnamon rolls this morning. The delicious cinnamon-roll smell is wafting our way from a wholesale bakery half a mile away.

“The wind is in the right direction this morning!” Henry’s father chimes in, trying to redirect the hungry hordes of cinnamon-roll lovers as he beats a hasty exit.

Wind and weather have been popular topics this month because we’ve been spending a lot more time outside.

Our wind adventures began with the pinwheels in our outdoor area (see our STEM Pinwheel Play post from August 2, 2021). Since then, the wind has been a daily topic as we have continued our STEM adventures.

“If I don’t see or feel the wind, how can I smell the cinnamon rolls?” asks Evelyn.

This is a great opportunity for the children to use their five senses as they explore the topic of wind. First, I explain that wind is simply moving air. Sometimes we can see it blowing through trees or grass. When a very light breeze is blowing, we don’t even notice the wind unless we look up at the clouds or the tops of the trees and see the clouds moving or the branches swaying.

“Remember the storm last week?” Henry asks. “The rain was going sideways. That was a really windy day! ”

Henry then shares a bit of knowledge that leads us into a discussion about wind speed and direction.

“That was the day it was really hot outside and then we could feel it get much colder,” he recalls.

“Remember how we could smell the rain?” Jimmy’s voice is full of excitement as he begins to add more pieces to his understanding of weather, air and what rain smells like.

Wind is air in motion—and right now there are a lot of little brains that are also “in motion” as the children learn more about their world.

“If wind makes things move, can it make the cinnamon rolls blow over here so I can taste them?” asks Lauren.

Immediately, Hudson grabs a dandelion. “This is the bakery, I’ll send you some cinnamon rolls!” He blows on the dandelion seedhead (or “puffball” as our gang calls it), and we meet more math and science benchmarks. Children use all of their senses to understand and organize their experiences and environments—and today is no different!

As children investigate, they gain knowledge that enhances their understanding of the world through a process known as scientific inquiry.

This is why our curriculum for the next day is often finalized after the discoveries of the current day. I use these moments of inquiry to set the stage for subsequent lessons with materials that will build on what the children have just learned.

The next day, I pulled out our tambourines, which are festooned with colorful streamers. We often use these tambourines for counting, pattern repetition, rhythms and games such as “Simon Says.” The children love watching the beautiful streamers undulate as they shake the tambourines to create sound and music. What a fun way for the children to experiment with STEM concepts such as wind, force and motion!

We also have wind chimes scattered around our outdoor play space. To create more opportunities for the children to see the wind in action—and encourage them to focus on the source and direction of the wind—I then brought out our play silks, parachutes and windsocks.

Later, we introduced silk scarves to create even more opportunities for experimentation with wind and force. Avery and Lauren (below) were quick to discover that, if they pushed or pulled hard, the scarves flew up or down faster. When they moved slowly and gently, the scarves floated in the wind. These simple cause-and-effect experiments were laying the foundation for later science learning.

By exposing our children to STEM learning opportunities through everyday play, we are prepping them for success in math, science, technology and engineering when they move on to elementary and middle school.

So serve up some warm cinnamon rolls with a side of STEM this summer!  Your students will be glad you did.

]]>
https://earlymathcounts.org/a-small-whiff-of-stem/feed/ 3 153443
T is for Teachable Moments https://earlymathcounts.org/t-is-for-teachable-moments/ https://earlymathcounts.org/t-is-for-teachable-moments/#comments Wed, 01 Sep 2021 16:50:36 +0000 http://earlymathcounts.org/?p=153535

“Hey everybody! Look at all of the tomatoes that are ripe today!” shouts Jacob to the gang.

“Can we eat them for lunch? Can we?” asks Lucus.

“Can we eat them now?” pleads Elizabeth.

It’s early September and preschoolers around the country are learning about apples, but we have tomatoes at our fingertips. The same tomatoes that we planted in the spring, watered, watched and then forgot about and ignored. But today these plants are full of red, ripe, juicy tomatoes. For the foreseeable future, our curriculum will revolve around tomatoes!

There’s been a lot of talk recently about curriculum themes and how they fit into early childhood education. So much of the learning that takes place in early childhood settings is spontaneous, rather than intentional. This doesn’t mean that early childhood educators shouldn’t be intentional about their curriculum development. They should. But great teachers are always willing to set their planned activities aside to seize a great learning opportunity when it arises.

I call these unplanned learning opportunities “teachable moments.” In so many ways, the child is the curriculum. By observing our early learners closely to see what ignites their curiosity, we can identify and build on the teachable moments that we encounter throughout the day.

Once we’ve identified a teachable moment, we can make the most of these spontaneous early learning adventures (and meet our early learning standards) by sharing our insights and asking questions that encourage children to dig deeper and make more connections as they engage in rich, authentic, hands-on learning that only looks like play.

After we engage in these impromptu investigations with our early learners, we can share the fruits of their learning adventures with parents and administrators, so that they can begin to understand how teachable moments can be harnessed to help prepare young children for the transition to kindergarten and success in the larger arena of life.

Soon, the stores will be filled with crisp, delicious fall apples, which will give rise to many of their own teachable moments, beginning with the letter “A.”  But today we have tomatoes, so we’re seizing the moment to harvest, sort, count, compare and investigate nature’s bounty!

It is only through genuine interactions and availability that teachers can identify these moments and act accordingly and spontaneously. Teachable moments require you to “think on your feet” and be flexible enough to stray from your planned path. If children’s interests take them in a direction that you hadn’t anticipated or planned for, you have to be ready to seize the moment and use it as a gift. Follow the joy of your students and your curriculum will develop organically!

“Look how many tomatoes are growing on this one vine!” Owen exclaims to his friends.

We are now collecting data and comparing attributes. Spontaneous discussions unfold as the children explore topics such as where the sun shines in the morning and which tomato plants get the most sunshine.

But how do the tomatoes ripen and turn red under all of those leaves? By observing, investigating and learning that living things grow and change, the children are building a strong foundation for future learning in earth science and life science.

We keep it simple. This type of learning is always developmentally appropriate because the children’s investigations are guided by each individual’s level of brain development.

“Avery, don’t eat them all!” cries one child as Avery pops a couple of freshly plucked tomatoes into her mouth.

We are exploring the concept of “many vs. few.”  But some of the children are too young to care about this concept and just want to experience the sweet deliciousness of a ripe tomato straight from the vine.

Our tomato harvest has all of the hallmarks of a true STEM learning adventure: investigation, discovery, collaboration and discussion. The children are learning through their senses: the visual task of surveying the tomato plants and comparing and categorizing the tomatoes as unripe (green or pale orange) or ripe and ready for harvest (deep orange); the tactile pleasure of separating a plump ripe tomato from its green stem; and the delicious sensation of biting into a tomato, still warm from the sun, and feeling it explode on the tongue. All of the goodness of nature and little brains in motion!

While two-year-old Lauren is more focused on picking the tomatoes and filling her bowl, some of the preschool-age children are busy trying to collect as many as possible. “Look how many I have!” squeals Linnea. “I have more than you!”

As the children explore the physical properties of the tomatoes, we are suddenly counting, estimating, comparing attributes and organizing by color and size. We have vocabulary and math flowing off of the children’s lips, which are stained with the juice of the ripe tomatoes. We are meeting our early learning standards—and the children are developing their own curriculum as they go!

Children construct their own understanding of the world when we provide them with a rich learning environment (in this case, our tomato garden) and ample time to explore, discover and investigate. We want children to think for themselves and not simply follow a preconceived curriculum or theme.

By taking advantage of authentic learning experiences in sensory-rich environments, we are setting the stage for the natural integration of early learning standards and successfully incorporating STEM knowledge into the daily lives of our early learners.

When you foster the development of a creative learning environment where children can find joy in learning, you will discover that your curriculum and lesson themes will spontaneously arise. In other words, let the children lead and the curriculum will follow!

Once the children have “followed their bliss,” introduce the books and thematic materials that support their interests. Build on their energy, enthusiasm and inquisitiveness.

If you head to the tomato garden, I think you’ll agree: early childhood STEM education has never tasted so good!

]]>
https://earlymathcounts.org/t-is-for-teachable-moments/feed/ 7 153535