D2 – Early Math Counts https://earlymathcounts.org Laying the foundation for a lifetime of achievement Thu, 21 Jan 2021 14:54:30 +0000 en-US hourly 1 183791774 Chrysanthemum https://earlymathcounts.org/lessons/chrysanthemum/ Fri, 21 Apr 2017 04:32:30 +0000 http://philosophydogs.com/lessons/chrysanthemum/ 4059 Classroom Survey https://earlymathcounts.org/lessons/classroom-survey/ Thu, 20 Apr 2017 23:32:30 +0000 http://philosophydogs.com/lessons/classroom-survey/ 4061 Dinosaur Hop https://earlymathcounts.org/lessons/dinosaur-hop/ Fri, 21 Apr 2017 04:32:30 +0000 http://philosophydogs.com/lessons/dinosaur-hop/ 4065 Float, Fly, Drive https://earlymathcounts.org/lessons/float-fly-drive/ Thu, 20 Apr 2017 23:32:43 +0000 http://philosophydogs.com/lessons/float-fly-drive/ 4072 Planes, Trains and Automobiles https://earlymathcounts.org/lessons/planes-trains-and-automobiles/ Fri, 21 Apr 2017 04:32:57 +0000 http://philosophydogs.com/lessons/planes-trains-and-automobiles/ 4111 Roll & Record https://earlymathcounts.org/lessons/roll-and-record/ Thu, 20 Apr 2017 23:32:57 +0000 http://philosophydogs.com/lessons/roll-record/ 4115 Shoe Sort https://earlymathcounts.org/lessons/shoe-sort/ Thu, 20 Apr 2017 23:32:57 +0000 http://philosophydogs.com/lessons/shoe-sort/ 4121 Who’s Hiding? https://earlymathcounts.org/lessons/whos-hiding/ Fri, 21 Apr 2017 04:33:05 +0000 http://philosophydogs.com/lessons/whos-hiding/ 4146 The Magic of Magnetism https://earlymathcounts.org/the-magic-of-magnetism/ https://earlymathcounts.org/the-magic-of-magnetism/#comments Fri, 01 Jan 2021 11:19:15 +0000 https://mathathome.org/?p=12039   “Look!” squeals three-year-old Eleanor.  “I can pick up these two balls! It’s magic!” Have you ever seen young children playing with magnets? The “magical” properties of magnets never fail to captivate early learners and spark a play buzz! Children learn by investigating, observing and figuring out how things work. Magnets fuel that curiosity in […]]]>

 

“Look!” squeals three-year-old Eleanor.  “I can pick up these two balls! It’s magic!”

Have you ever seen young children playing with magnets? The “magical” properties of magnets never fail to captivate early learners and spark a play buzz!

Children learn by investigating, observing and figuring out how things work. Magnets fuel that curiosity in a way that is simple and accessible.

As they explore the properties of magnets through play, children develop a deeper understanding of scientific principles by asking questions such as “why” magnets stick together and “how” magnets work.

Magnetic play helps lay the foundation for further investigations as we guide the children through activities such as developing hypotheses and theories, solving problems and making predictions. By observing and studying cause and effect, our young STEM explorers can begin to develop a basic understanding of concepts such as magnetic attraction, magnet strength and magnetic forces and fields.

Playing with magnets is a great way to introduce STEM into a child’s life. If you need to record observations, this is a great time to take a seat and watch as children incorporate predictions and conclusions into the learning experience.

To set the stage for magnetic exploration, I put out a wooden tray filled with magnetic wands and magnets in a variety of shapes and sizes. Then I give each of the children an aluminum tray to define their play space and keep the magnetic balls from rolling off of the table onto the floor.

When children add magnets or remove them from the tray, they are learning about math concepts such as more, less, off and on. They’re also learning about patterns, shapes and sizes.

I also fill simple sensory bins with colored rice or coffee beans. Then I add magnetic and non-magnetic objects, as well as a magnetic wand for finding the “treasures.” I set two baskets nearby to encourage the children to sort their objects.

“Is this magnetic?” asks one child. “This should work,” says another. “It’s silver!”

Making a prediction means focusing on what we think will happen next based on our prior knowledge. It’s considered a guess if we have no prior knowledge. We can help children develop their prediction skills when we are playing with magnets, reading a story or finding our way home on a walk.

 

When the children at our early learning center play with magnetic wands and balls, they love to “catch” the balls on the wand and count how many they have. Sometimes I will see them intentionally create patterns.

Playing with magnets is a powerful math and science activity in early childhood classrooms because it fosters conversation and exploration and provides a fun and engaging incentive for children to make predictions and observe outcomes.

If you can, give the children a long period of time to investigate the magic of magnets and work through their theories. This extended time to conduct STEM investigations and learn through focused play is a gift that they may not be given in their future academic lives.

It will amaze you when you see the amount of time that children will spend exploring the magnets on their tray. It’s a calm, quiet and very, very focused activity that slows down even our most frenetic friends.

As we continue to play, we engage in a discussion about the forces that pull magnets together. We keep it pretty basic. This young group hasn’t shown any interest yet in the whys and the hows of magnetic forces and fields. They are too enchanted by the magic of it all. I have been down this trail before. When the brain is ready, the questions will be asked and we will have the resources available to answer their questions and push the experiments and investigations a wee bit further out of their comfort zone. There will be many more experiments for extended learning. But, for now, exploring the magic of magnetism suits us all just fine! 

A few words of caution. Magnets are dangerous if ingested. We hope that our students no longer put everything in their mouths, but we can’t count on it. You know your students better than anyone. It is best to err on the side of caution and use large magnets that cannot possibly fit into a child’s mouth if you are at all concerned. It will make the day of magnetic play more enjoyable for YOU if you don’t have to worry.

Stay safe and take care!

 

]]>
https://earlymathcounts.org/the-magic-of-magnetism/feed/ 11 12039
Fort Building 101 https://earlymathcounts.org/fort-building-101/ https://earlymathcounts.org/fort-building-101/#comments Fri, 16 Apr 2021 01:06:57 +0000 https://mathathome.org/?p=12272   “LOOK!” screams a four-year-old with such joy that we know this isn’t a garden-variety “I want to share something with you” moment. As the gang rushes to her side, they come to a complete standstill, frozen in awe. Oh happy day! Some kind souls have shared a fort with the community! There before us […]]]>

 

“LOOK!” screams a four-year-old with such joy that we know this isn’t a garden-variety “I want to share something with you” moment.

As the gang rushes to her side, they come to a complete standstill, frozen in awe.

Oh happy day! Some kind souls have shared a fort with the community! There before us stands the most wonderful teepee-shaped fort that we have ever seen. Forts have been popping up all over town this year—and I couldn’t be happier about this trend.

This 14-foot high monument has sparked wonder and curiosity in all of us. We have stumbled upon a STEM adventure! This is math, science and engineering play that allows the learning to come naturally and at each child’s developmental level. This is also sharing. It teaches children that our community creates beautiful spaces to be enjoyed by all.

“Who lives here?” asks Liam as he bravely ventures closer.

“Can we go in?” questions three-year-old Madison, not sure that she really wants to.

We do go in, and the investigation into fort building sets us in motion for the day. Do you remember building forts when you were a kid? Did the memory of that fort just resurface? If it did, you retained that memory and are likely able to build another.

These are the moments that we like to create for our early learners. Hands-on learning enables children to take their understanding to a deeper level so that they can analyze the information that they have collected and then apply this knowledge when they create their own forts.

After giving everyone a turn to observe and discuss the masterpiece in front of us, we take a good hard look at the fort and investigate how it was constructed so that we can build a fort of our own.

We discovered this fort (above) while hiking in our neighborhood.

“I think this fort was started from that fallen branch!” Harper hypothesizes.

This leads to closer observation as we determine that this fort has sides that were built with sticks ranging in size from large to small. By leaning them against the main branch, the architects made the fort longer and wider. We begin to get a better sense of measurement as we visually estimate the length and width of the fort.

We always add a few sticks or branches to any fort that we discover, and today is no different. The older children quickly begin to add branches—an activity that reinforces our perception of the fort as a communal structure. When our younger learners hesitate, we reassure them that they really can’t go wrong by adding a stick or two.

“It looks like a triangle!” shouts Elizabeth. This declaration leads to an animated discussion about shapes and ways to incorporate doors, windows and other shapes into our fort.

We have a geometry class happening before our very eyes! We are looking at two- and three-dimensional shapes and using visualization, spatial reasoning and geometric modeling to solve problems.

These are opportunities that are rich in learning, creativity and team building. We share theories and develop hypotheses about the number of people it might have taken to build the fort, how they got the biggest branches up so high and how they created a base to stabilize the entire structure. We also examine the bottoms of the branches and hypothesize that they were probably broken off during a storm, rather than cut cleanly with a saw.

        

We know that our forts won’t look like the ones that we’ve encountered. We’ll have to use whatever materials we can find in our own play spaces. But our observations give us a better understanding of the fundamentals of fort and teepee construction. These found structures are the spark of inspiration that we need to design a fort of our own!

It’s time to bring out the assessment chart because this gang is on fire! This playful experience in engineering involves concepts such as angles, inclines, balance and elevation. When we let children learn through play, movement and trial and error, we lay the groundwork for the kind of deep learning that builds new neural connections.

Once the seeds are planted, the children often continue to develop their fort-building skills in our program or in their own backyards.

When the Midwest experienced a rare derecho in August 2020—and every house in our area suddenly had a backyard full of branches—our students immediately began collecting the fallen branches to build forts in their neighborhoods.

They had joined the community-wide fort-building movement!

Notice the similarities? By giving our children long periods of uninterrupted time to play and investigate, we empower them to build their own forts and develop new STEM skills and insights that they will be able to transfer to worksheets when the time is right.

When our students returned to our program this fall, we began napping outdoors on a daily basis. Not surprisingly, when a parent suggested a weekend nap to their child, the child insisted on napping outdoors—in her fort. When children build structures, the joy comes not only from the building but from returning to this place that they have created by themselves, for themselves.

These are the moments when I thank our anonymous community of fort builders for “planting the seeds” of fort building with our young learners. These industrious fort architects may be 12 years old or 90 years old. They may be building these impromptu structures to offer protection from the weather, bring joy to others or simply provide a peaceful place for fellow community members to commune with the natural world.

These lovely forts are gifts of time, hard work and beautiful design that bring science, math and engineering into the lives of our youngest citizens.

Thank you for making so many moments of STEM learning possible through play with the children of our community! You inspire all of us! Thank you! You are truly changing our world!

 

 

 

 

 

]]>
https://earlymathcounts.org/fort-building-101/feed/ 9 12272