nature – Early Math Counts https://earlymathcounts.org Laying the foundation for a lifetime of achievement Mon, 01 Jul 2024 18:53:38 +0000 en-US hourly 1 183791774 Finding Math in a Field of Strawberries https://earlymathcounts.org/finding-math-in-a-field-of-strawberries/ https://earlymathcounts.org/finding-math-in-a-field-of-strawberries/#comments Mon, 01 Jul 2024 12:18:00 +0000 https://earlymathcounts.org/?p=156203 “I’ll carry the biggest container,” volunteers four-year-old Matthew as the younger children fall in behind him. Picking strawberries during the first week of summer break is an annual tradition in our early childhood program. What better way to learn about counting, measuring and estimating than to get out in the fresh air and sunshine and […]]]>

“I’ll carry the biggest container,” volunteers four-year-old Matthew as the younger children fall in behind him.

Picking strawberries during the first week of summer break is an annual tradition in our early childhood program. What better way to learn about counting, measuring and estimating than to get out in the fresh air and sunshine and enjoy hands-on activities that engage all of the senses—from seeing and hearing to touching, tasting and smelling?

I am fairly certain that we are eating as many strawberries as we pick! But that makes this math-packed adventure even better because children learn best through their senses.

The friendly folks at our local U-pick farm assign us a numbered row to pick from, which gives us yet another way to factor math into our strawberry-picking adventure: number recognition!

We are in Row 66 today,” I call out to the children as they march behind me, wearing their strawberry boxes as hats.

As we walk past each row, Matthew begins to count, 1 . . . 2 . . . 3 . . .

“I can do it!” blurts out three-year-old Owen. He races to the front of the line, positions himself at Matthew’s side, and picks up where his older friend left off:  “4 . . .  5 . . . 6 . . .

Matthew gently takes over the counting when Owen reaches the limits of his number knowledge at the 13th row. But as Matthew counts out the double-digit numbers, I can hear Owen echoing him, which is a great way for Owen and his younger peers to practice their counting skills. 

Row 66!” Owen stops abruptly and swivels his head from left to right as he surveys the row dotted with bright red strawberries just waiting to be picked. “There must be millions,” he observes in awe.

Maybe not millions, but this is a great opportunity to introduce concepts such as quantity and estimating. In fact, one of the best places to strengthen math skills is in the garden.

Kindergarten” is a German word that literally means “children’s garden,” which covers Froebel’s concept of “a place for children,” as well as his beliefs regarding childhood growth, development and learning (Elkind, 2015).

Teaching math in a garden comes naturally as children count, sort, find patterns, and organize by size, color or other attributes.

“Look at how big this strawberry is!” Owen exclaims excitedly. “I bet it’s the biggest one we find all day!”

What starts out as a competition to find the largest strawberry is soon replaced by relaxed camaraderie as the children bite into the sun-warmed fruit and the juice stains their lips, chins and fingers bright red.

“Close your eyes and open your hands,” Asa tells Harper as she plops a strawberry into each of Harper’s outstretched palms. “Now tell me which strawberry weighs more.”

Harper obliges. “Definitely this one!” he answers, holding up his left palm and opening his eyes. “But that’s weird because the heavier strawberry is smaller . . .” 

“I know! I thought that was weird, too!” Asa replies.

Hands-on activities with everyday objects help children learn about measurement. Moments like these also offer real-world opportunities for them to discuss math concepts such as size, weight and capacity.

Children need to talk about mathematical concepts and share their theories with one another and their teachers.

I wonder which basket will weigh more?” I ask Joseph. “Your basket with eight big strawberries or Vera’s basket with 14 little strawberries?”

“Vera’s! She has 14!” shouts Joseph. We decide to weigh them after we’re done picking to see if his guess is correct.  

“I found a double strawberry; I bet it weighs the most!” announces Gabriel with a mischievous grin.

“That’s not FAIR!” the gang whines in unison.

Gabriel laughs. “It’s really cool. I’m taking this one home to show my mom and dad, so please don’t eat it!”

We finish filling our baskets and make our way to the checkout to see how many pounds we’ve picked this year. The sun is getting warmer and our legs are getting weaker. It’s time to rehydrate with some cold water and refuel with a protein-packed lunch.

We’ve picked 13.2 pounds of strawberries! The eight big strawberries in Joseph’s basket did weigh more than the 14 small strawberries in Vera’s basket—but only by two ounces.

No one seems to care. The sun and the heat have sapped us of the energy and enthusiasm we need to discuss size and weight at greater length, but there will be other chances when we return to the classroom.

Although some of these concepts may be a bit too advanced for some of the younger learners in the group, we have planted the seeds for future academic success during a day of fun in the strawberry fields.

Later, back in the classroom, we set up a farmer’s market and invite the parents to purchase baskets of strawberries from their children, who serve as cashiers.

In the days ahead, there will be lots of strawberry snacks, jam-making and strawberry smoothies—along with more opportunities to learn and share early math concepts. 

Sink your teeth into some juicy math this summer. Whether you make it to your local farm, the farmer’s market in your community, or simply introduce fruits and vegetables into your early learning program, there’s plenty of math packed into that yummy summer produce!

]]>
https://earlymathcounts.org/finding-math-in-a-field-of-strawberries/feed/ 10 156203
Risk-Taking, Math and a Hollow Tree https://earlymathcounts.org/risk-taking-math-and-a-hollow-tree/ https://earlymathcounts.org/risk-taking-math-and-a-hollow-tree/#comments Thu, 01 Feb 2024 14:41:53 +0000 https://earlymathcounts.org/?p=155802 “LOOK!” Ellie summons us with such joy that there’s no doubt she has spotted something wonderful. Our eyes follow the four-year-old as she dashes to a very large, very hollow tree. A tree that is still alive and thriving—with an opening over four feet tall just inviting a group of children and their teacher to […]]]>

“LOOK!” Ellie summons us with such joy that there’s no doubt she has spotted something wonderful.

Our eyes follow the four-year-old as she dashes to a very large, very hollow tree. A tree that is still alive and thriving—with an opening over four feet tall just inviting a group of children and their teacher to peek inside.

“Who lives in there?” asks Clare as she summons up the courage to move closer.

Can we go inside the tree?” asks Veronica, although the question is a rhetorical one because the three-year-old has no intention of venturing inside.

“Is the tree hollow all the way up to the top?” Alex asks in wonder as he approaches the tree and glances upward to assess the tree’s height.

“I think a whole family of squirrels might live in there . . . or bats!” Harper’s pronouncement prompts her peers to quickly back away from the tree.

It’s so quiet and still as everyone contemplates the hollow tree that I’m not sure if the children are even breathing. All eyes are locked on Ellie, our resident risk-taker.

Emboldened by the children’s curiosity, Ellie inches her way closer to the tree’s interior. She is cautious but curious, brave yet apprehensive as she simultaneously challenges herself and calculates the risk at hand. 

Research tells us that children won’t take risks if they think they can’t succeed. But I know Ellie. She is an amazing observer and a visual learner who tends to rely on her senses when approaching an unfamiliar situation.

Today is no different. I watch as Ellie inspects the size, strength and thickness of the trunk. She inspects the ground outside of the tree cavity for animal droppings. She pokes her head into the hole and peers up, down, left and right before stepping inside. Ellie thrives on moments like these and trusts herself to evaluate the situation.

I trust Ellie as much as she trusts herself. These moments of risk-taking and assessment help a child develop cognitive, social-emotional, and self-regulatory skills—traits that make Ellie a natural leader.

Suddenly, Ellie pops back out of the hole in the tree, looks around and beams at the rest of us. “It’s so cool!” she exclaims. “You have to come in!”

One by one, slowly but surely, the children all make their way into this amazing gift from Mother Nature. Children grow in their ability to appraise risk by observing other children at play.

When children observe their friends taking risks and succeeding, they become more confident about taking risks themselves. This confidence carries over to the classroom and prepares them to try something new, possibly fail, and try again.

This hollow tree trunk has evoked wonder and curiosity in the entire gang, sparking a STEM investigation that helps lay the foundation for later math, science, and engineering concepts.

When we let children learn through play, movement, and trial and error, we lay the groundwork for the kind of deep learning that builds new neural connections. These are the moments that inspire our early learners to investigate the possibilities.

Today, nature has provided the ultimate learning tool and transformed a moment of outdoor play into an exploration of the concepts of spatial relationships and geometry. An understanding of spatial relationships helps children talk about where things are located. I hear them use words such as in, out, down, over, under and next to, vocabulary that helps lay the foundation for geometry

When children use words such as wide, heavy and light, they are using descriptors for measurement. We begin to get a better sense of measurement as we visually estimate the height of the tree, the height of the entrance hole, and the number of friends who might be able to fit inside the tree. 

When children are guessing, predicting and classifying their ideas, they are engaging in early algebra, the scientific method, and basic engineering design. This morning of play is strengthening their understanding of these concepts as they use the vocabulary words repeatedly throughout their investigation.

Hands-on learning enables children to take their understanding to a deeper level so that they can analyze the information that they have collected and then apply this knowledge when they create their own structures during block play, art projects and clay play.

These are opportunities that are rich in learning, creativity and friendship. Whether they are on the playground or in the classroom, children must take risks that enable them to develop new skills and explore their ideas in a safe and supportive environment.  

Look for opportunities that can build your student’s risk-taking skills. Like our exploration of the hollow tree, these learning adventures will not only build their confidence and self-esteem but lay the foundation for academic success!

]]>
https://earlymathcounts.org/risk-taking-math-and-a-hollow-tree/feed/ 12 155802
Finding STEM in a Field of Sunflowers https://earlymathcounts.org/finding-stem-in-a-field-of-sunflowers/ https://earlymathcounts.org/finding-stem-in-a-field-of-sunflowers/#comments Tue, 01 Aug 2023 12:00:27 +0000 https://earlymathcounts.org/?p=155456

“When we drive to school in the morning, the sunflowers are facing one way and when we drive home after school they are facing the other way. That’s because they always want to see where I am going!” brags Melania to the other children on the bus.

“That’s not true,” grumbles Roberta, who is clearly not a sunny morning person.

“Yes, it really is true! Melania insists. “Ask my dad!”

I planned this morning field trip to a local sunflower farm to set the stage for some hands-on STEM learning. But it’s going to be a long Thursday if the kids are already arguing about the science behind the sunflowers we are about to see.

Hoping to lighten the mood on the bus and soothe the “hangry” Roberta, I reach into my bag and pull out some Sun Butter Energy Bars.

“Actually, what Melania is saying is partly true,” I explain as I hand out the energy bars. “As a sunflower grows, it turns its face to follow the sun from sunrise to sunset. So the sunflowers do face in one direction when Melania sees them in the morning and another direction when she sees them in the afternoon.”

By the time we arrive at the sunflower farm, the energy bars have worked their magic. Roberta’s morning grumpiness has dissipated, everyone seems perkier, and the group is staring at the giant flowers in amazement.

“Look at how tall they are!” gasps Lauren. “They are even taller than the grownups!”

“Can I touch one?” asks Lauren. She reaches up and touches the center of the sunflower. “It’s bumpy,” she observes. “Wait, inside the middle, are those all little tiny sunflowers? Look! There are a million little tiny flowers inside the big flower head!”

Maybe not a million, but this is a great opportunity to introduce concepts such as quantity and estimating. In fact, one of the best places to strengthen math skills is in the garden!

Whether you bring flowers into your classroom, plant a school garden or take a field trip to a sunflower farm or a pumpkin patch, you can extend the learning by creating hands-on opportunities for children to practice their early math skills. When children observe, measure, compare and analyze their surroundings, it helps them make sense of their world.

“Look how big this one is!” says Jason, staring up at an enormous sunflower in awe. 

I pull out a measuring tape so that we can measure how tall it is. We discuss how to measure an object. This leads to a conversation about concepts such as diameter and circumference.  Of course, these concepts are too advanced for this group, but I like to “plant the seeds” for later vocabulary development.

As we wander through the sunflower farm, I prompt the children with conversation starters such as:

“I wonder how many seeds they planted.” 

“I wonder how tall the sunflowers get.”

My goal? To inspire the children to find the math hidden in this field of sunflowers and start asking questions of their own.

“I wonder how many times people get stung by all those bees hanging around the sunflowers?” muses Roberta.

“There are a lot of bees!” responds Melania, ever the Pollyanna to Roberta’s pessimist. “But they aren’t bothering us. They are so busy eating nectar that they don’t even know we are here.”

“Look, this one has four bees on it!” observes Jason. “Look, Roberta! Let’s see if we can find more!” 

 

When children are learning to count, they love counting anything, even bees! By teaching math in the garden, you can show children how we use math in our daily lives.

 

Soon the children are comparing the sunflowers in the field, using math vocabulary words such as big, bigger and biggest, small, smaller and smallest, and tallest and widest.

When you return to the classroom, you can build on this lesson by encouraging the children to arrange flowers, fruits or vegetables in order from smallest to biggest or biggest to smallest.

Our morning at the farm has inspired a morning of math-filled conversations. From the shapes that make up the sunflower, to counting bees to measuring stalks, math concepts come to life when we take the time to look for math in our everyday encounters.

Ready to find more math in the garden? Check out these Early Math Counts lesson plans: The Tiny Seed and Flower Fun.

 

]]>
https://earlymathcounts.org/finding-stem-in-a-field-of-sunflowers/feed/ 7 155456
Smiling Boot Prints in the Snow https://earlymathcounts.org/smiling-boot-prints-in-the-snow/ https://earlymathcounts.org/smiling-boot-prints-in-the-snow/#comments Wed, 01 Feb 2023 14:00:45 +0000 https://earlymathcounts.org/?p=155103  

Today is one of those magical winter mornings when snow blankets the ground and clings to the trees around our center.  The sun is shining and the world looks so sparkly and irresistible that we head outside in spite of the freezing temperatures.

“Hey! Who has the smiling boot?” Jacoby calls out to the group. He scans the play space, which looks like a snowy white canvas dotted with boot prints.

“Do you have the smiling boot?” he asks Maria.  

Maria looks confused as she glances down at her boots. “No, my boots are pink.” 

“No, no…on the bottom!” Jacob points to her boots.Does your boot have a smiling face on the bottom?” 

Even I am confused by Jacoby’s question—until he points to the clue in the snow. 

“Look!” he declares. “Somebody has a smiley face on the bottom of their boot.”

Ah-hah! Indeed, we do have a smiley face boot print staring up at us from the snow-covered ground. Well, this will warm us all up!  Let the STEM investigation begin!

After a fresh snowfall, it’s so much fun to find and follow animal tracks. But we’ve never really paid attention to the patterns on the soles of our boots until now.

One by one, Maria and Jacoby begin to check the bottom of each friend’s boot. This simple moment of exploring patterns leads us to measurement, reasoning and comparing attributes.

Young children instinctively seem to notice attributes. It may be the shape, size, color, length or some other characteristics of an object, such as today’s smiling boot face.

Children develop their understanding of matching and patterns through experience. Because it’s difficult to consider a lot of attributes at once, children often begin creating sets by finding exact matches.

When children create pairs of boots or find an exact match to the smiling boot face, they are creating sets of items that are exactly alike. Maria and Jacoby are using rudimentary math, science and engineering skills as they observe and ask questions—all while solving the smiling boot print mystery!

Suddenly, everyone is stomping their boots and comparing and analyzing the shapes and patterns that their boots are leaving in the snow.

“I have zigzags!” announces Liam.

Sure enough, as we all run over to look at Liam’s boot print in the snow, we see row after row of zigzags.

“They look like mountains!” laughs Rokia. “That’s so cool!”

 “I have rectangles!” announces Rachel. “If I turn around, it looks like a house with a roof. Look!  See, at the bottom of my boot print?”  

Our focus is now very intentional and the mood has shifted from playful curiosity to deep observation and concentration

This is what child-led learning looks like. For those of you who believe that “child-led learning” can only lead to chaos, I urge you to put on your winter wear, head outside and see how effective and wondrous it can truly be.

“I have diamonds!” shouts Julio, “Oh and triangles at the top and bottom. Wow! Look at my boot print, it has really cool patterns.”

We are working on spatial reasoning, direction and positional vocabulary. This is the deep learning that takes place when children have ample time to explore and investigate.

Every day, children learn something new.  Every day, they deepen their understanding of STEM principles and share their insights and theories with their fellow STEM explorers.

Time is the key to deep learning!

“I have snakes!”  Josie shouts.

“Snakes?” 

Everyone comes running to see the newly discovered boot-print pattern. And, yes indeed, Josie’s boot print really does look like snakes.

But Isaac sees it differently. “I think it looks like waves,” he counters. “You know, like when you throw a rock in the river and it makes those lines?”

Then five-year-old Maya reorients the group to the smiley-face boot prints that started the morning’s STEM investigation.

“Where did that smiley face boot come from?” she asks, putting an end to the snake-shape and wave-shape discussion.

“I don’t know!” retorts a frustrated Jacoby. “That’s what I am trying to figure out!” 

“No, I mean, where did the smiley face boot print start?” Maya clarifies, assuming the role of lead investigator. “Where did you find it? Did you follow it, like we followed the cat paw prints last winter?” 

Jacoby pauses and I can see the wheels turning as he considers Maya’s questions. This is a lightbulb moment when the children suddenly recall a forgotten game from winters past. We have plenty of wandering cats in our neighborhood. For years, we have engaged in follow-the-cat-print expeditions on snowy days, following the tracks and trying to figure out the exact route that the cat took and why. Today has ushered in a new season of snow—and now we are rediscovering the game all over again.

Five-year-old Maya has had a few more years of brain development and a few more years of winter play, so she has retained more memories of those snowy-day games than the younger children who started the smiling boot print investigation.

Suddenly we are tracking movement, direction and the changes in how the boot print is left. We don’t have paper and pencils to collect data outside today, but our friends are forming hypotheses and making deductions as they piece the clues together and abandon the ideas that don’t pan out.

Maya continues as the lead investigator. “Look at the size of this boot track. It’s much bigger than our boots. See? I think it’s an adult boot print. Look how far it is between the foot prints. It takes me three steps to their two steps.”

“Maybe it’s the mail carrier,” suggests Lois.  “She brought a package to the door yesterday.”

“It can’t be the mail carrier,” reasons Maya. “She doesn’t walk on this side of the center.”

“It must be a parent!” shouts Jacoby. “Who has a parent with a smiling boot?”

The question is met with dead silence. No one knows the answer.

Suddenly, Maya turns to me and asks, “Do you have a smiling boot? You are an adult.”

Much to my disappointment and the chagrin of my young friends, I am not the owner of the smiling boot. We are getting cold and our investigation has hit a dead end. We decide to go indoors and warm up with some hot cocoa and banana muffins.

At pickup time, the children check the boots of every parent for a smiling face, but no one has the matching boot. Many weeks later, we discover that the smiling boot belongs to a grandparent of one of the children at our center. By then the thrill of the hunt is over. But the learning has not been lost. A great morning of STEM investigation is tucked away safely in the developing brains of our early math explorers.

Ready to start your own Snowy Day STEM Investigation? Check out Show Me Your Shoe, an Early Math Counts lesson plan that can be adapted for your own boot-matching investigation!

 

 

]]>
https://earlymathcounts.org/smiling-boot-prints-in-the-snow/feed/ 10 155103
What’s in YOUR Pocket? Collections in Early Childhood https://earlymathcounts.org/whats-in-your-pocket-collections-in-early-childhood/ https://earlymathcounts.org/whats-in-your-pocket-collections-in-early-childhood/#comments Thu, 01 Sep 2022 13:00:38 +0000 http://earlymathcounts.org/?p=154700  

Do you have collectors in your midst? Those young children who can turn a five-minute walk into a 15-minute treasure hunt? The children who fill their pockets with treasures and then load up your pockets with the overflow?  I love these kids. They can wreak havoc with our daily schedules, but they help us slow down, take a breath, smile and find beauty in unexpected places. They also make me smile when I remind myself that these impromptu, child-led collecting and sorting expeditions are worth their weight in gold as we work with young children to build a strong foundation for later math learning.

We collect lots of natural loose parts like acorns and buckeyes, feathers and rocks. But we also collect colored gems, bottle caps, keys and other odd items. This, my friends, is the rock-solid, hands-on play that lays the foundation for number sense.

At all ages, children classify intuitively to make sense of a world that seems largely out of their control. By the time infants are two weeks old, they can distinguish between objects that they suck on and those they do not. By the age of two, toddlers form sets of similar objects. In preschool, children begin to sort objects into categories according to a given attribute.

If it attracts their attention and they touch it, that’s the moment the child-led learning begins! So grab a bag, a basket or a bucket, take a walk and see what sparks the imagination of the children in your life. A good pocket comes in handy on these expeditions!

Along the way, observe the collecting habits of your budding mathematicians. What captures their attention? What treasures do they deem worthy of pocketing? Does one of the younger treasure hunters in your group need guidance or mentoring?

During your expeditions—and other daily outings—keep your eyes out for heart rocks. It’s a great opportunity to build some early math skills, whether you’re waiting for a table to open up at a restaurant or killing time before an appointment. Hidden in those landscape rocks, there is sure to be a heart rock!

Children will naturally begin to sort their collected treasures into piles or “sets.” Separating will come very naturally as children sort acorns into one pile and bottle caps into another. They may group by colors, shape, texture or weight. They may also organize their objects in a line by size or other attributes.

As they sort the objects that they collect, children are building their analytical thinking skills, which are the lifeblood of mathematics. This is a great opportunity to introduce vocabulary words such as more and less.  Young children have an inborn sense of more and less. They always know if someone has more than they do!  Children can learn number sense simply by playing with their collections!

If the grouping of sets leads to counting, this is another great opportunity for young children to build foundational math skills. Regardless of how high a preschooler can rote count, a child’s sense of what those numbers actually mean develops gradually. We call this “understanding number sense,” and it requires relating numbers to actual quantities.

There are three core counting principles:

Counting Sequence 
There is an ordered sequence of number names. Counting involves using the same sequence each time, starting with one. By using counting songs and moving each object as you give it a “name,” you can help children learn the counting sequence.

One-to-One Correspondence
One number from the counting sequence is assigned to each object in a collection. Instruct the children to put each object into a container or slide it across the table as it is counted.

Cardinality
The last number assigned to an object when counting a collection indicates the total quantity of objects in the collection. Ask: “How many?” If the children don’t know the answer to this question, count the objects together and note the last number that you counted as you push the objects all together into a group.

By turning counting into an enjoyable, hands-on activity, you are also introducing the children to mathematical concepts such as place value and addition.

Remember to take it slow and make it fun. Children develop at different rates and have different learning styles. They will master early math concepts in their own time and in their own way.

So let the children set the pace. Enjoy the cooler fall temperatures as you embark on your collecting expeditions—and see what collections land in your pockets!

Looking for some great activities to introduce sorting and counting to your early learners? Look no further than the Early Math Counts lessons page.

Here are a few of my favorites to help you get started:

 

]]>
https://earlymathcounts.org/whats-in-your-pocket-collections-in-early-childhood/feed/ 10 154700
Spring Dandelion Day STEM Adventures https://earlymathcounts.org/dandelion-days-of-stem-learning/ https://earlymathcounts.org/dandelion-days-of-stem-learning/#comments Fri, 01 Apr 2022 13:00:06 +0000 http://earlymathcounts.org/?p=153436

Each spring, we eagerly anticipate the arrival of the growing season—from the greening carpet of grass to the buds bursting into blossom on the trees. We especially delight in the dandelions that can turn any grassy area into a STEM wonderland!

Dandelions introduce so many math adventures into our early childhood program. The neighborhood park is our favorite destination for a day of dandelion STEM adventures.

Our spring dandelion days create hours and hours of exploration, investigation, observation and just plain fun!  Mother Nature is serving up math opportunities everywhere we turn!

When we find ourselves in these nature-based outdoor classrooms, the learning is always developmentally appropriate and child-centered.

On the day that this photo (above) was taken, the flowers were too tall to spend much time on patterns or subitizing or blowing seed heads in the wind. We kept finding longer and longer stems, some with flowers and some with wispy white seed heads.

The giggles were contagious as the children continued to find taller and taller dandelions. It was a day that was unplanned, so the measuring tapes were back at school, but it didn’t matter!  This was a great moment for estimating, predicting and comparing attributes side by side.

“My grammy says the tallest dandelion you can find equals how many inches you will grow before your birthday!” said one STEM explorer.

Oh boy… GAME ON!  Giggles and screams of discovery floated down the hillside as our dandelion math morning took on a life of its own.

“If you grow that much, you will be a GIANT!” predicted one preschooler as Violet studied a dandelion stem that must have been at least two feet long.

“Violet! You keep finding longer and longer stems!” exclaimed another. “Wow, look at the one behind you!  Add that to your collection! Are the tallest ones up there?”

When you are yards away from your friends AND on a hill, it’s hard to determine who has found the tallest dandelion until you walk over to compare sizes and see which dandelion has the longest stem.

Measurement is one of the earliest mathematical concepts that children learn.

Comparing the sizes of objects, determining which stem is the longest, comparing which child is the tallest and identifying that a friend is high up on the hill are all examples of the ways that young learners begin to understand the concept of measurement.

By building on this rudimentary understanding, we can help lay the foundation of logic, reasoning, comprehension and critical-thinking skills that will lead to later math success.

“Did they all grow from the same seed family?” mused one dandelion hunter.

“Maybe we blew on a tall dandelion the last time we were here and the seeds got planted in the ground and grew this tall,” postulated another.

Whoa, now those are some interesting ideas! But, before we could discuss their theories, the children had moved on to yet another area of investigation.

“Hey guys! You need to pick the flower at the very, very bottom of the stem to keep your stem super long,” instructed one of the older children.

This concept was way beyond the comprehension of some of our younger friends, despite the efforts of the other children to teach them.

Ah, the beauty of multi-age groups. The beauty of allowing learning to take place as the brain and physical development allows. The beauty of friendships and childhood on a sunny spring day, when all of the stars (or, in this case, dandelions!) align and the learning comes so naturally.

I knew that we were using our math vocabulary when I heard the words, “height, tall, taller, tallest, short, shorter, shortest, long, longer, longest, more and less.”  These simple but important words proved that the children were reaping the benefits of this springtime STEM lesson without the support of lesson plans or a word wall.

Exposure to experiences such as our Spring Dandelion Day STEM Adventure enables early learners to begin to interpret the mathematical qualities in real-world settings.

By observing, measuring, comparing and analyzing objects in their environment, they are also learning more about the world that they live in.

Our springtime “field study offered an invaluable opportunity for young learners to practice early math skills while guiding their own mastery of important math concepts.

The experience was an empowering one for every one of our STEM explorers, inspiring the children to build on their nascent knowledge by seeking out new ideas and experiences.

 

Carve out time and opportunities for your early learners to acquire, practice, rehearse and build upon the skills that will carry them through their academic life. Your math curriculum and early learning standards are outside—just waiting for you!

Click here for a lesson plan on Flower Fun and measurement for your class!

 

]]>
https://earlymathcounts.org/dandelion-days-of-stem-learning/feed/ 6 153436
Tapping into the Different Types of Intelligence https://earlymathcounts.org/march-1-2022-multiple-intelligences-for-young-stem-learners/ https://earlymathcounts.org/march-1-2022-multiple-intelligences-for-young-stem-learners/#comments Tue, 01 Mar 2022 14:00:44 +0000 http://earlymathcounts.org/?p=154179  

I watch as two-year-old Thalhah works his way through a 60-piece puzzle. I’ve seen this child spend hours quietly working his way through puzzle after puzzle—which leads me to wonder if some children are just better at solving puzzles than others. Is puzzle-solving an innate skill? Or can any child become a puzzle master?

In his 1983 book, Frames of Mind: The Theory of Multiple Intelligences, Harvard University psychologist and neuroscience professor Howard Gardner proposed that people have many different kinds of “intelligences.”

Gardner believes that there are nine intelligences, including visual-spatial intelligence, linguistic-verbal intelligence, logical-mathematical intelligence, bodily-kinesthetic intelligence, musical intelligence, interpersonal intelligence, intrapersonal intelligence and naturalistic intelligence. He also suggested that there may be a ninth type, which he referred to as “existentialist intelligence.” These various types of intelligence, according to Gardner, exist in different individuals in varying degrees and emerge over time.

Gardner’s Theory of Multiple Intelligences can provide a helpful framework as you observe how your students approach learning. You’ll gain insights that will enable you to assess your early learners and their different learning styles in an entirely new way and help you determine the best learning environment and activities for each child.

So grab a piece of paper and a pencil! Many of your students’ names will come to mind as you read this post and reflect on the different ways that each child thinks, solves problems and learns.

 

VISUAL-SPACIAL INTELLIGENCE (Picture Smart)

Students with high spatial intelligence think and process information in pictures and images. They have excellent visual-receptive skills and fine-motor skills. They like to build with Legos, read maps and do jigsaw puzzles, which they can visualize accurately and abstractly.

 

BODILY-KINESTHETIC INTELLIGENCE (Body Smart)

Students who possess bodily-kinesthetic intelligence are keenly aware of the world as they explore it through touch and movement. Their bodies and minds work in harmony and they can control their bodies with grace, expertise and athleticism. These children can be taught through physical activity, hands-on learning and role playing. 

 

MUSICAL INTELLIGENCE (Music Smart)

Musical students think, feel and process information primarily through sound. They are sensitive to sounds in their environments, and they may learn better with music playing in the background. They can be taught by turning lessons into lyrics, speaking rhythmically and tapping out time.

 

INTERPERSONAL INTELLIGENCE (People Smart)

Students with a high level of interpersonal intelligence have a natural ability to interact with, relate to and get along with others. They are good leaders. These students learn through interaction. They have many friends, show empathy for others and possess “street smarts.” They often learn best by engaging in group activities and dialogues.

 

INTRAPERSONAL INTELLIGENCE (Self Smart)

Children with strong intrapersonal intelligence have a deep awareness of their feelings, ideas and goals. These learners tend to shy away from others. They are strong-willed, confident and opinionated. They learn through books, creative materials, privacy and time. Students with this type of intelligence usually need time alone to process and create.

 

VERBAL-LINGUISTIC INTELLIGENCE (Word Smart)

Verbal-linguistic students love words and use them to “think through” and solve problems. These learners have highly developed auditory skills and often think in words. They like reading, playing word games and making up poems or stories. You can help these students learn by encouraging them to say and see words, read books, solve riddles and play rhyming games.

 

LOGICAL-MATHEMATICAL INTELLIGENCE (Math Smart)

Logical-mathematical students enjoy working with numbers. They can easily interpret data and analyze abstract patterns and have a well-developed ability to reason and think in terms of cause and effect. These children are able to see and explore patterns, solve puzzles and ask questions. They like to experiment. They need to learn by investigation and form concepts before they can deal with the details.

 

NATURALISTIC INTELLIGENCE (Nature Smart)

These children enjoy being in nature and want to preserve and protect the natural world. Students with strong naturalistic intelligence easily recognize and categorize plants, animals and rocks. They enjoy playing in the water or with pets and bugs and generally enjoy the outdoors. These children like to sit near windows and play with natural loose parts. They may learn better outdoors.

 

EXISTENTIAL INTELLIGENCE (Life Smart)

These children see the big picture and are deep and reflective thinkers. They are often capable of tackling deep existential questions such as “Why are we here?” and “Why do we die?” The best way to teach these children may be by diving into all the reflective thoughts that they throw at us. They love to think about how the world works, so topics such as gravity, weather, the planets and the universe all seem to pique their interest. These children like volunteering to help out in the classroom or support their latest cause. They also enjoy group discussions and discussions with adults.

When we focus on learning styles, we can see why children who have visual-spatial or logical-mathematical intelligence are more drawn to puzzles and may be better at solving them. If you’ve ever observed children who could complete puzzles that were clearly too advanced for their age, it’s likely that these children possessed high levels of visual-spatial and/or logical-mathematical intelligence.

When you learn how your students learn best, this knowledge takes your teaching up a notch and helps your students soar. Could this be the piece of the puzzle that changes how you present a topic to a struggling student?  Give it a try and find out!

 

 “We are not all the same, we do not all have the same kinds of minds and education works most effectively for most individuals if human differences are taken seriously.

— Howard Gardner, Harvard University psychologist and neuroscience professor

]]>
https://earlymathcounts.org/march-1-2022-multiple-intelligences-for-young-stem-learners/feed/ 3 154179
Baby, It’s Cold Outside https://earlymathcounts.org/baby-its-cold-outside/ https://earlymathcounts.org/baby-its-cold-outside/#comments Wed, 15 Dec 2021 12:15:14 +0000 http://earlymathcounts.org/?p=153966

“LOOK! We have icicles!”

“Can I have one?  I need one!”

On this brisk winter morning—much to the children’s delight—nature has given us the gift of icicles. The children’s fascination with these frozen treasures leads to an abundance of “teachable moments” as we engage in some STEM learning while getting some fresh air and exercise.

Soon we are counting, sorting and measuring the icicles. I can practically see those little brain synapses firing as the children use their senses to investigate the properties of the icicles and revel in the joy of being able to choose, hold and taste their STEM lesson for the day.

“My icicle is longer than yours!”

“I like the little icicles! They fit in my mouth better!”

“I like the thick ones, they last a long time! Look how fat mine is!” 

When I hear my students discussing size, comparing attributes and sharing their math vocabulary with their friends, my heart just soars. Mathematical language is one of the strongest predictors of children’s early mathematical success. Whenever children discuss relative concepts, they are doing math!

Aww! I dropped mine and now it is in little pieces!” Janelle wails, holding back tears.

“They still taste good!  Now you just have lots of icicles!” says the ever-optimistic Claire. “Before you had one, but now you have more! You have 1, 2, 3, 4, 5!  You have five icicles!”  

Claire touches each icicle as she counts. The ability to count in sequence and use one-to-one correspondence to determine the number in a set is known as rational counting.

Janelle has the ability to rote count, reciting the sequence in the correct order without an understanding of one-to-one correspondence or the concept of cardinality (the number of elements in a set). “I do have five!” she shouts.

“Look, I can drop mine and it doesn’t break!” yells Owen as he drops the thickest icicle to the sidewalk, only to have a few pieces chip away.

It is difficult to ask children to compare quantities if they don’t know what “more” or “less” means. If they can understand “before” and “after,” they are more likely to know, or be able to understand, what number comes after four. When children learn this language in a math context, they are ready to move on to more advanced mathematical concepts. We are building our math foundation!

“How did you make these icicles? We don’t have them at my house,” asks Rowan as she chomps on her icicle. 

“I know!” chirps Robyn.When the sun warms up the snow on the roof it melts and turns the snow into water and the water starts dripping and then it gets cold again and makes an icicle! “

We take a long look at the ice melting off of the neighborhood roofs and other inclines and see that the dripping has indeed created icicles. We discuss how warm temperatures melt the snow and that is why our clothes often get wet, even when the snow is frozen solid on the ground. Now we have science! I love it when our play leads us right down the path to new STEM experiences and investigations.

“Oh, when our hands are warm in our mittens, it melts the snow? I never knew that!” Logan has processed the information in a way that many of his younger friends don’t have the brain development to do. He seems quite astounded by this realization. Together, we hypothesize which icicles will melt faster or whose icicle will get eaten faster.

Then we swap out our wet mittens for dry ones and hunt for more ice to expand our STEM  vocabulary.

Discussions about the weather are often rote and meaningless in early childhood classrooms. Classroom activities that involve calendars and weather patterns can be boring for young children because they are removed from the actual seasons and weather events.

But bringing the children outside to experience the weather firsthand or bringing the snow inside to be investigated on a water table is interesting. Involving the children in hands-on investigations is a much better way to teach concepts such as “winter” or “cold” than directing a child to walk over to a window and report that “It is snowing outside.”

During this busy holiday season, give yourself and your students a chance to escape the heated classroom and venture into the great outdoors to breathe in some fresh air and find your curriculum in the natural world.

I promise you that this approach will lead to far more STEM learning than talking about the weather during circle time!

 

]]>
https://earlymathcounts.org/baby-its-cold-outside/feed/ 14 153966
T is for Teachable Moments https://earlymathcounts.org/t-is-for-teachable-moments/ https://earlymathcounts.org/t-is-for-teachable-moments/#comments Wed, 01 Sep 2021 16:50:36 +0000 http://earlymathcounts.org/?p=153535

“Hey everybody! Look at all of the tomatoes that are ripe today!” shouts Jacob to the gang.

“Can we eat them for lunch? Can we?” asks Lucus.

“Can we eat them now?” pleads Elizabeth.

It’s early September and preschoolers around the country are learning about apples, but we have tomatoes at our fingertips. The same tomatoes that we planted in the spring, watered, watched and then forgot about and ignored. But today these plants are full of red, ripe, juicy tomatoes. For the foreseeable future, our curriculum will revolve around tomatoes!

There’s been a lot of talk recently about curriculum themes and how they fit into early childhood education. So much of the learning that takes place in early childhood settings is spontaneous, rather than intentional. This doesn’t mean that early childhood educators shouldn’t be intentional about their curriculum development. They should. But great teachers are always willing to set their planned activities aside to seize a great learning opportunity when it arises.

I call these unplanned learning opportunities “teachable moments.” In so many ways, the child is the curriculum. By observing our early learners closely to see what ignites their curiosity, we can identify and build on the teachable moments that we encounter throughout the day.

Once we’ve identified a teachable moment, we can make the most of these spontaneous early learning adventures (and meet our early learning standards) by sharing our insights and asking questions that encourage children to dig deeper and make more connections as they engage in rich, authentic, hands-on learning that only looks like play.

After we engage in these impromptu investigations with our early learners, we can share the fruits of their learning adventures with parents and administrators, so that they can begin to understand how teachable moments can be harnessed to help prepare young children for the transition to kindergarten and success in the larger arena of life.

Soon, the stores will be filled with crisp, delicious fall apples, which will give rise to many of their own teachable moments, beginning with the letter “A.”  But today we have tomatoes, so we’re seizing the moment to harvest, sort, count, compare and investigate nature’s bounty!

It is only through genuine interactions and availability that teachers can identify these moments and act accordingly and spontaneously. Teachable moments require you to “think on your feet” and be flexible enough to stray from your planned path. If children’s interests take them in a direction that you hadn’t anticipated or planned for, you have to be ready to seize the moment and use it as a gift. Follow the joy of your students and your curriculum will develop organically!

“Look how many tomatoes are growing on this one vine!” Owen exclaims to his friends.

We are now collecting data and comparing attributes. Spontaneous discussions unfold as the children explore topics such as where the sun shines in the morning and which tomato plants get the most sunshine.

But how do the tomatoes ripen and turn red under all of those leaves? By observing, investigating and learning that living things grow and change, the children are building a strong foundation for future learning in earth science and life science.

We keep it simple. This type of learning is always developmentally appropriate because the children’s investigations are guided by each individual’s level of brain development.

“Avery, don’t eat them all!” cries one child as Avery pops a couple of freshly plucked tomatoes into her mouth.

We are exploring the concept of “many vs. few.”  But some of the children are too young to care about this concept and just want to experience the sweet deliciousness of a ripe tomato straight from the vine.

Our tomato harvest has all of the hallmarks of a true STEM learning adventure: investigation, discovery, collaboration and discussion. The children are learning through their senses: the visual task of surveying the tomato plants and comparing and categorizing the tomatoes as unripe (green or pale orange) or ripe and ready for harvest (deep orange); the tactile pleasure of separating a plump ripe tomato from its green stem; and the delicious sensation of biting into a tomato, still warm from the sun, and feeling it explode on the tongue. All of the goodness of nature and little brains in motion!

While two-year-old Lauren is more focused on picking the tomatoes and filling her bowl, some of the preschool-age children are busy trying to collect as many as possible. “Look how many I have!” squeals Linnea. “I have more than you!”

As the children explore the physical properties of the tomatoes, we are suddenly counting, estimating, comparing attributes and organizing by color and size. We have vocabulary and math flowing off of the children’s lips, which are stained with the juice of the ripe tomatoes. We are meeting our early learning standards—and the children are developing their own curriculum as they go!

Children construct their own understanding of the world when we provide them with a rich learning environment (in this case, our tomato garden) and ample time to explore, discover and investigate. We want children to think for themselves and not simply follow a preconceived curriculum or theme.

By taking advantage of authentic learning experiences in sensory-rich environments, we are setting the stage for the natural integration of early learning standards and successfully incorporating STEM knowledge into the daily lives of our early learners.

When you foster the development of a creative learning environment where children can find joy in learning, you will discover that your curriculum and lesson themes will spontaneously arise. In other words, let the children lead and the curriculum will follow!

Once the children have “followed their bliss,” introduce the books and thematic materials that support their interests. Build on their energy, enthusiasm and inquisitiveness.

If you head to the tomato garden, I think you’ll agree: early childhood STEM education has never tasted so good!

]]>
https://earlymathcounts.org/t-is-for-teachable-moments/feed/ 7 153535
Creating STEM Environments with Loose Parts https://earlymathcounts.org/creating-stem-environments-with-loose-parts/ https://earlymathcounts.org/creating-stem-environments-with-loose-parts/#comments Sat, 24 Jul 2021 09:12:10 +0000 http://earlymathcounts.org/?p=153328

As I look around me, I see busy, contented children. Jimmy and Tali are seeing how high they can stack their rocks. Eve and Noa are creating a tea party for fairies near the sandbox. Eleanor and Salli are creating homes and meals for the squirrels who frequent the rain garden. Everyone is happy and learning. We call this a “play buzz.”

When I stop and take a closer look, I see that the children are not only playing happily, but working on math and science early learning standards through play with loose parts.

Architect Simon Nicholson, who developed the theory of loose parts in 1972, believed that loose materials that could be carried, combined, rearranged, lined up or taken apart and put back together in multiple ways provided more opportunities for creative play than static or fixed materials and environments.

Loose parts are materials that can be used alone or combined with other materials (Kabel, 2010). By creating opportunities to introduce math and science concepts—along with observations, predictions and data collection through loose-part play—we allow our students to experiment and work their way through their STEM explorations.

In outdoor classrooms or family backyards, educators and parents are discovering the beauty of loose parts in children’s learning and play experiences. The environment IS our curriculum. When we add natural elements to play areas, we create STEM-rich environments with myriad opportunities to solve problems in deep and complex ways.

As more and more classrooms and families return to the outdoors, simply giving our children the gift of time will facilitate STEM learning. This type of play comes easily to young children and can be far more productive than the worksheets, number cards and memorization activities that may be too advanced for your earliest learners.

We like to think of loose parts as acorns, bark, dirt, fabric, feathers, flower petals, leaves, moss, pebbles, pinecones, pine needles, rocks, sand, seeds, shells, sticks and whatever else may be native to your region.

We rarely take walks without bringing home all kinds of loose-part “treasures.”

Use what you have. If your loose parts are small and your early learners carry them around in containers to create “things” with, they are still playing with loose parts!

Take advantage of what you have around you and use these loose parts to set up a STEM-rich environment. We also use blocks, people, animals and other manipulatives. Loose parts can range from dramatic play props to toy cars to pots, pans and pouring devices. If your environment doesn’t already contain a collection of loose parts, I strongly suggest that you add them. Then stand back and observe your early learners to see how their play is transformed!

The beauty of loose parts is that they can be moved, which gives children the power to create new learning adventures every day. When materials are displayed in visually pleasing ways, this sends a message that you respect the materials and the creativity that they inspire.

Storage is another important piece of the loose-parts puzzle. A well-organized storage system imparts a sense of order and helps the children access the parts more easily. Children need to know where the loose parts are stored to be able to design their play experience—and to put their materials away when their project has been completed.

Outdoors, we use galvanized buckets, plant containers, crates or other containers for loose-parts storage. Use your imagination. I can tell you from practice that the happier the container makes you, the more relaxed you will be with loose parts.

Your outdoor storage will be more successful if you carefully determine the placement of your storage before you begin. If you move the storage every day, it will cause confusion.

Also, I know that some people think that more is better with regard to loose parts. But loose parts encourage divergent thinking (a thought process used to generate creative ideas by exploring a variety of potential solutions). So less is actually more.

Also, be aware that your buckets and baskets will likely get dumped out and used as loose parts instead of storage containers.

That’s a struggle for me. Usually, it means that I need more containers for the children to use in their loose-parts play. I recently added colanders for outdoor loose-parts storage. This has been a game-changer. Rain and snow drip through the holes, allowing the loose parts to drain and dry quickly. Look for them at your local resale shop or scout some out at garage sales to start your collection. They are truly the ideal container for outdoor storage.

Indoors, I try to keep our natural loose-part materials in wood bowls or sturdy baskets that are soothing to the eye and create a sense of order and tranquility.

STEM is all about discovery and exploring the world around us. When our early learners ask questions or wonder how or why something works, they are building a STEM knowledge base. So create an environment rich in loose parts and let the learning begin!

Document the children’s progress as they work through their theories, predictions and observations. You will witness design thinking, cause-and-effect epiphanies and collaboration between children like never before!

 

]]>
https://earlymathcounts.org/creating-stem-environments-with-loose-parts/feed/ 3 153328