quantity – Early Math Counts https://earlymathcounts.org Laying the foundation for a lifetime of achievement Sat, 01 Apr 2023 21:38:20 +0000 en-US hourly 1 183791774 Dice Are Nice! https://earlymathcounts.org/dice-are-nice/ https://earlymathcounts.org/dice-are-nice/#comments Mon, 03 Apr 2023 10:00:00 +0000 https://earlymathcounts.org/?p=155234

A pair of four-year-olds in my classroom are happily playing “dice wars,” a simple but fast-paced game. To play, each child rolls a die and the player who rolls the highest number wins. No one is keeping score today—and nobody seems to care who wins each round. 

I watch as Juan shakes the die between his palms, rolls it, counts each pip (dot) on the side that’s facing up and announces, “1, 2, 3!” I rolled a three!”

“My turn!” exclaims Maria as she shakes the die between her hands and rolls it. “SIX! I win! Six is more than three!” Maria doesn’t need to count the pips. She recognizes the pattern immediately and her number sense tells her the value of the pips on the die.

Rolling a die is fun in its own right, but these friends are working on the math skill known as subitizing. When children begin to recognize the pattern on the die and associate it with the number of pips (dots) without counting each pip, that is subitizing!

Children develop subitizing skills in much the same way that they learn to read sight words.

In a previous Early Math Counts blog post, Jen Asimow, M.Ed, explained it this way: “Remember when you learned about ‘sight words’ and how children learn them? According to one school of thought, children memorize sight words by taking a mental snapshot of the entire word. By using context clues, they learn the word as a ‘whole’ rather than as a series of letters. Consider how children learn the words EXIT or STOP.  Both of these words appear in the same way—on signs above doors or on red octagonal street signs—and nearly always in the same colors and typefaces. All of these clues help children form a mental picture of these two words, and they often learn the pictures before they learn the individual letters that make up the words.”

Maria and Juan are playing with a die, so they are only working with numbers ranging from one to six. As they play successive rounds of the game, they are beginning to recognize the patterns on the die without counting the individual pips.

With every roll of the die, Juan’s pattern-recognition skills are growing stronger. Before long, he can recognize the total number of pips on each throw without counting.

According to child development experts, the ability to subitize quantities up to and including four by the age of five represents a significant developmental milestone. 

Subitizing is a fundamental math skill, and dice games are a good way to help foster the development of this skill.

“Hey! Do you want to play that block-building dice game?” asks Pierre as he grabs a die from the jar and joins the group. 

Roll and Build is another dice game that we’ve played in our classroom for years. One child rolls a die and the other children add that number of blocks to their towers. Children learn to recognize four dots on a die, which helps them understand the cardinal value (how many four represents), which they can then link to the symbol (4) and the word (four).

Games like this provide repeated opportunities to interpret the dot images. As children figure out how many pieces to collect or add or how many spaces to move on a game board, they develop their number sense and other early math skills such as counting, number identification, the correlation between numbers and the items being counted and concepts such as greater than or less than.

Keep a jar full of dice within easy reach to give the children plenty of opportunities to practice and make up their own games.

Begin by subitizing quantities of 1, 2 and 3. In a math workshop that I attended, the trainer had blacked out the pips representing 4, 5 and 6 for the younger children.

If a child is having difficulty subitizing, reduce the quantity of dots

Dice games help young children develop math and social-emotional skills in a fun and engaging way.  So grab some dice and introduce your gang to subitizing fun

Check out our Early Math Counts lessons page for dice game ideas. Be sure to click on the Connect With Families button in the left-hand column of each lesson to download a Parent Letter that you can customize to share the day’s learning activity with parents and other family members.

]]>
https://earlymathcounts.org/dice-are-nice/feed/ 16 155234
More Than a Card Game https://earlymathcounts.org/more-than-a-card-game/ https://earlymathcounts.org/more-than-a-card-game/#comments Thu, 01 Dec 2022 14:00:51 +0000 https://earlymathcounts.org/?p=154840  

“One, two, three, flip!” 

“I win!” shouts Matif.

Remember playing War as a child? It’s simple and fun and it teaches young children how to win and lose without a lot of drama.

I love playing cards with young children because that little deck helps foster the development of early math and social-emotional skills in a big way.

When I play War with very young children, I often pull out the face cards and any card higher than a six. Depending on the ages and developmental levels of my students, I may even pull out the aces because it’s too difficult for young children to associate the letter “A” with the number “1.”

Start by dealing the cards evenly between all of the players, stacking the cards face down in front of each child. 

No peeking allowed!  On the count of three, each player will flip the top card over into the center of the table, face up.

“One, two, three, flip!”

A chorus of young voices chants in rhythm as our game continues.

“I have a five,” shouts Mable. “That’s bigger than your two, so I win!” 

Compare the cards played. The highest card wins the hand. The winner takes all of the cards played in the round and adds them to a new stack of “won” cards. 

One, two, three, flip!”

“Ah, you both have a six! War!”

When there’s a tie between the two highest players, you have a “duel.”

To play a duel, the two players each place three cards in the middle of the table, face down. Then they each lay down another card (the fifth card for this round). This card should be facing up. The highest card wins, and the winner takes all of the cards from this round and adds them to a new stack.

“One, two, three, flip!”

I watch as a four and a three get turned over by the players in the duel.

“Ah, you won all those cards!” says the child with the losing hand. “Lucky you!” 

When children are playing cards, this is a great time to observe their number sense. Can they identify the numbers by name? Can they determine which number is higher? Can they follow the rules?  When the cards match, can they count out the three additional cards that they will need for a duel?  

Play until your main stack is gone and then count up how many cards the players have in their stacks of “won” cards. The player with the most cards wins. Once the children have mastered the cards through the number six, I will add the sevens and eights back into the deck. Later, I will add in the nines and the tens.

Many children will be able to play a full game of War by the time they reach kindergarten—face cards included. Keeping it simple in the beginning is a great way to assess your students’ number recognition skills and value development.

As children play this deceptively simple game, they are developing their number-recognition skills and beginning to grasp concepts such as number value, greater than and less than.

They are also learning important life skills such as how to follow rules, take turns and take their turns quickly without making the other players wait too long. That’s a lot of learning for a game that fits in your pocket! 

We also want to teach children how to win and lose graciously. I love playing War because it’s a game of chance and everyone has an equal chance of winning. Because each round has a winner, we are practicing the win/lose concept over and over again in rapid succession. There isn’t time for the winners to jump up and do a victory dance or the losers to break down and get weepy. The same child will not win every round, which gives every child many opportunities to practice good sportsmanship.

There’s a reason that children have enjoyed playing War for generations. It’s fast and fun and a bit addictive. So grab a deck or two, play a few rounds with your early learners and call it your math curriculum for the week. You’ll be teaching invaluable life lessons along with those early math skills!

]]>
https://earlymathcounts.org/more-than-a-card-game/feed/ 10 154840
STEM Soup! https://earlymathcounts.org/acorn-soup-for-lunch/ https://earlymathcounts.org/acorn-soup-for-lunch/#comments Sun, 01 May 2022 13:00:02 +0000 http://earlymathcounts.org/?p=154378  

“Who wants soup? I am making soup for lunch today!” Eleanor shouts to anyone willing to join her as she “cooks up” her concoction.

Eleanor is our concoction wizard. She can often be found adding loose parts to a large pot of water, mixing away while she muses about the ingredients she needs to add to her “recipes” for soup, magic potions and smelly perfumes.

“Aw, I don’t want soggy flowers in my soup!” Jose protests as he peers into the pot. “I like it better when you sprinkle them on top. Can you make the flowers dry again?”

Eleanor is a master at transforming dry flower petals into wet soup ingredients. But she hasn’t yet mastered the art of drying the wet petals with a swish of her stick.

“I can’t make them ‘not soggy’ anymore,” she admits. “But I can add some dry ones on top for you, sir.”

Questions such as “can it be undone” or “can I manipulate this” are all part of the learning process as our students engage in play with loose parts to investigate the phenomenon of transformation.

“Okay, great!” agrees Jose. “Can I have lots and lots of the red flowers on top, please?”

James comes running over to join the play. “What smells so delicious?”

“Acorn soup!” the children shout in a chorus of excited voices.

Our sensory-play kitchen is alive and well!

Sensory play activates and engages the senses—including touch, smell, taste, sight and hearing—while promoting the development of fine-motor and gross-motor skills.

When children engage in sensory play, they build new neural connections. These connections lay the foundation for language and motor development, creativity and essential life skills such as problem-solving, decision-making and memorization.

Imagine all of this cognitive development arising from a pot of acorn soup!

Acorn soup—or any magical, mystical concoction—can help children develop an understanding of math concepts in myriad ways, but most obviously through the use of mathematical language.

Imagine children mixing materials and discussing whether or not they should add more flowers, herbs, sticks, stones, pine needles or bark.

Quantity is a central concept in mixing. So it makes sense to incorporate pots and pans of all sizes, as well as measuring cups, to stimulate inquiry-based learning about quantity and volume, as children ask questions such as “How much should we add?” or “Do we want it to be thick like stew or thinner like soup?” It’s all part of building a child’s math vocabulary.

I could line up six young chefs to cook up pots of acorn soup and no two “recipes” would be alike. Children love to direct their own learning as they observe the “cooking” process and evaluate the ingredients that will make the best pot of “soup.” This is critical thinking at its best!

Whether you are cooking for play or actual consumption, it’s important to give children their own pots, bowls, measuring cups and utensils. Watching a friend cook is just not the same as engaging in hands-on, inquiry-based learning.

Real pots, pans, spoons, measuring cups and utensils help to “keep it real.” I delight in finding miniatures of good-quality cooking utensils. I love to use small stainless steel bowls. They are just the right size and they are affordable and easy to find at thrift stores. The same applies to measuring cups and spoons. Go with the stainless steel versions whenever possible. They always present well and they are sturdy and stain-resistant.

Children who are constantly engaging in “science experiments” or cooking up concoctions such as acorn soup are often exploring the transformation schema.

A schema is a repetitive pattern of behavior as children explore the world around them. Children who engage in the transformation schema will be fascinated by objects and their potential for transformation.

Play in this schema can be as simple as the transformation from dry to wet, from empty to full or from solid to liquid. Encourage children to investigate questions like these:

“How does this object change when I add water?” 

Does the color change?”

“Does the texture change?”

“Does it smell different?”

By identifying and supporting schema play, you can tap into children’s interests and instincts while deepening and intensifying play and learning experiences.  

This is what STEM looks like! These preschool play moments pave the way for later learning in science, technology, engineering and math.

Experiences like these are integral to our mission here at Early Math Counts. Math is everywhere—in everything that we do with children and in every classroom activity. But we need to make the most of these math learning opportunities.

“Eleanor, is the soup ready yet?” Tucker asks from the other side of the yard. “How long does it have to cook?”

Ah, the ever-important gift of time. These periods of uninterrupted play stimulate brain development in a big way while enhancing children’s understanding of how the world (and math!) works.

So get your soup on!

]]>
https://earlymathcounts.org/acorn-soup-for-lunch/feed/ 5 154378
Ramps, Inclines and STEM in the Great Outdoors https://earlymathcounts.org/ramps-inclines-and-stem-in-the-great-outdoors/ https://earlymathcounts.org/ramps-inclines-and-stem-in-the-great-outdoors/#comments Tue, 15 Jun 2021 09:51:24 +0000 http://earlymathcounts.org/?p=153198   “Hey, Hudson! How did you do that?” Eleanor is amazed at Hudson’s success as he races a car down the ramp. This is the same car that she couldn’t get to stay on the ramp just minutes earlier. I listen as Hudson turns the car over and explains, “See those wheels? The front ones […]]]>

 

“Hey, Hudson! How did you do that?”

Eleanor is amazed at Hudson’s success as he races a car down the ramp. This is the same car that she couldn’t get to stay on the ramp just minutes earlier.

I listen as Hudson turns the car over and explains, “See those wheels? The front ones were bent. I had to take my finger and straighten that part that connects them. That is why it was going crooked.”

Eleanor is completely engaged in the moment as Hudson instructs her on the physics of motion.

We have a group of kids at our center who have grown up together, developed great friendships and built a strong early math and science foundation. Science skills enrich children’s math skills and concepts through hands-on experiences. Math is used to construct and understand data that is collected through observation. You can do math without science, but you can’t do science without doing math.

In the past few weeks, I have been reminiscing about how this group’s understanding of concepts has grown right along with their physical development. We are currently ramp and incline crazy, an activity that has piqued the children’s interest in cycles over the past few years.

Recently, inclines have dominated our play once again, and we have been doing a lot of investigative activities with ramps of all types and sizes. Experiments with force, speed and motion foster the development of scientific-inquiry skills and offer endless math opportunities, as well as great fun!

When our young friends play with inclines, they often try out new ideas and techniques. I love to listen to their theories as they engage in this rudimentary scientific exploration while mentoring and encouraging one another. Their knowledge continues to grow as they experiment and observe the outcomes. This is data collection!

Once again, we are meeting those early learning standards through long periods of uninterrupted play. Not all of their ideas will work. When they don’t, this leads to deeper communication and collaboration as the children use what they’ve learned to modify their techniques.

I watch as they observe each other’s successes and failures and try to improve on their ideas and methods to achieve their goals.

excited jame

Simply placing the basket of beanbags at the top of the slide is all that it takes to encourage collaboration, cooperation and a lot of giggles. Activities such as these prompt children to explore their environment and use what they learn to design new experiments and test out new ideas as they make sense of the world around them.

By offering opportunities such as these, we are laying the foundation for the mathematical concepts and skills that they will need to perform later scientific investigations.

Ramps and Inclines provide a treasure trove of opportunities to meet your math, geometry, measurement and number standards. I love to watch the children at my center as they make predictions and then test out their theories. Sometimes with success, sometimes not so much. By reflecting on their experiences, the children are constructing their own understanding and knowledge of how the world works. Counting, classifying, measuring and comparing are some of the processes that can take place when we allow long periods of uninterrupted time for exploration and discovery.

Our play experience with ramps and inclines is a perfect example of STEM learning. The physics involved in creating stable structures and moving objects in various ways will enable us to meet our science standards for the day. Engineering happens when the children design their structures or change the way they move their objects. When they draw conclusions about how objects move through space, make predictions and collect data, we have wrapped up our STEM lessons in one pretty little package of play!

These learning experiences offer an abundance of opportunities for children to learn important math, science and engineering practices; ask questions; and arrive at conclusions. Through their observations, they may be able to identify the problem and carry out new investigations—collaborating and problem-solving with their friends as they construct a new understanding of the matter at hand. When we enable children to manipulate their surroundings, experiment and interact with materials, we create rich learning environments.

Best of all, this activity is developmentally inclusive. All ages can engage in incline play. It took less than a day for our youngest learner to figure out that the object he drops from the top of the incline will slide to the bottom. This activity keeps his attention for long periods of time and his enjoyment never ceases as he conducts his incline experiments again and again.

The joy of watching young children join in the math and science play never gets old. So grab a ramp and a few young friends and start your own math and science club!

]]>
https://earlymathcounts.org/ramps-inclines-and-stem-in-the-great-outdoors/feed/ 3 153198
STEM Building in the Window Frame https://earlymathcounts.org/stem-building-in-the-window-frame/ https://earlymathcounts.org/stem-building-in-the-window-frame/#comments Mon, 15 Mar 2021 13:26:32 +0000 http://earlymathcounts.org/?p=91750  

“AUGGGHHHH!” I hear screams, a crash and giggles galore.

The joy of Magna-Tiles® has returned to our ever-popular window-stacking play. When these colorful magnetic tile mosaics come crashing down from the window frame, the children respond with laughter and joy. By contrast, the collapse of three-dimensional block formations often elicits groans and tears.

Something about the suspense of the build (and the challenge of stacking the magnetic tiles higher and higher without triggering a collapse) keeps the children coming back to this activity time and time again.

For anyone unfamiliar with Magna-Tiles, they are magnetized tiles of different shapes that can be used to build the most amazing creations. We have purchased other magnetic block sets, but the children had difficulty figuring out the polarization or were frustrated by the lack of versatility. Ultimately, those more expensive sets were abandoned to collect dust in a corner while the children spent endless hours playing and learning with the Magna-Tiles.

Is there a more perfect block than a Magna-Tile? If I were stranded on an island with a group of preschoolers, this would be on my top-ten list of must-have learning tools. Heck, it would be on my top-three list. These are, without a doubt, the favorite block in our program. What’s not to love? Magna-Tiles build confidence and fuel hours of creative play. Our only problem with Magna-Tiles is that we never seem to have enough!

I read somewhere that you know you have enough blocks when there are still blocks on the shelves. I’m still not sure I have enough Magna-Tiles on any given day, and I always find myself purchasing more. (Full disclosure: I often purchase PicassoTiles, which are less expensive, equally rugged and nearly identical to my original Magna-Tile set. So, if your program is on a budget, don’t hesitate to buy this less expensive set.)

Magnetic tiles are a STEM classroom delight. We have math opportunities with shapes and colors, counting, blending colors, angles and geometry galore! We have science and engineering as we explore different designs and building techniques. The magnetic feature opens doors to design and construction options that regular wooden blocks cannot provide.

“What color is your tree?” Harrison asks his best friend, Jack, as they use their magnetic tiles to change the colors of the scene outside our window.

The collaboration continues as the two boys follow their creative impulses and develop their ideas.

Then Jack proposes a new challenge. “What if we try a triangle this time?”

The boys determine that the results will be the same regardless of the shape. I am convinced that the children’s understanding of different shapes has been greatly enhanced by the use of these magnetic tiles. Magnetic tiles are the perfect educational tool for teaching all things geometric!

I also love to observe the children as they engage in problem-solving when they are confronted with a shortage of large square magnetic tiles. They quickly determine that they can create the same shape with four smaller magnetic tile squares.

Magnetic tiles also lay the foundation for an understanding of sets and quantities, as well as concepts such as location and ordinal positioning as the children expand their STEM knowledge and vocabulary.

“Jack, do you think we can add this square and it won’t fall down?” asks Jack’s twin sister, Eve, who is working through her predictions and collecting data on what works and what doesn’t.

I watch as Eve gingerly pries the corner of the bottom tile away from the window and triggers a structural collapse that brings all of the magnetic tiles tumbling down.

This investigation of “What happens if…?” is met with delight and infectious laughter from Eve’s peers as the building collaboration starts all over again.

“If we add this triangle to the top, the trees will turn green and look different from the red trees down here.”

Jack and Eve continue to pursue different avenues of learning with the tiles. One minute they are investigating colors and the next they are observing patterns or determining which shape should be added to the mosaic.

I’ve noticed yet another benefit of our window-frame magnetic-tile mosaics: The activity often brings children together who don’t naturally play side-by-side.

In other words, this group endeavor builds community. I am not sure if it’s a team effort of US versus the WINDOW BLOCKS or if it’s simply the contagious joy of the activity that makes everyone want to join in the fun.

When the temperatures drop below zero for days on end, I know that I can count on our magnetic tiles to lighten the mood and enrich our learning through play.

One more note: I have been known to remove the magnetic tiles from our play on occasion.

Why? Because I believe that magnetic tiles are so easy to use that they create “lazy builders.” This is just a personal theory of mine, but I’ve seen it play out over and over again. Sometimes the children in my program need to be pushed out of their comfort zone.

I do this by pulling out my wooden unit blocks, which require the children to perfect the balance and symmetry skills needed to build a stable block tower.

When those wood towers fall, I remind my wee ones that they are great builders and then I help them start building again from the foundation up.

When I rotate the magnetic tiles back into our play after a period of going “back to basics” with the wooden blocks, I nearly always notice that the children’s building skills have improved.

Try it and let me know your results. Happy building!

 

]]>
https://earlymathcounts.org/stem-building-in-the-window-frame/feed/ 2 91750
Nest Building is STEM Building https://earlymathcounts.org/nest-building-is-stem-building/ https://earlymathcounts.org/nest-building-is-stem-building/#comments Mon, 01 Mar 2021 12:17:17 +0000 http://earlymathcounts.org/?p=12407 “I found an empty nest! Can we keep it?” Owen’s joyful discovery captures everyone’s attention. Three-year-old Avery comes running. “Are there eggs?” she asks her older and wiser five-year-old friend. “Can I see?” she begs. “Please let me see?” “There are no eggs, just an old nest. Can we please keep it?” pleads Owen. After […]]]>

“I found an empty nest! Can we keep it?” Owen’s joyful discovery captures everyone’s attention.

Three-year-old Avery comes running. “Are there eggs?” she asks her older and wiser five-year-old friend. “Can I see?” she begs. “Please let me see?”

“There are no eggs, just an old nest. Can we please keep it?” pleads Owen.

After a quick glance to confirm that the nest cradled in Owen’s hands is not harboring a feathered inhabitant, I grant my permission.

Owen handles the nest gingerly before realizing that it is sturdier than it looks. After a few tugs and a few moments of studying the nest, he very gently hands it over to the others.

We have a collection of nests. We love to study the materials used to build each nest, as well as the nest construction methods used by different local bird species.

We also try to guess the type of bird that built each nest and how many eggs might have been laid in these cozy homes crafted from sticks, grass, leaves, string, mud and other found objects.

       

I watch Ave silently investigating and collecting data as she turns the nest in one direction and then another. You can almost see the wheels turning.

“I think the bird used some litter [drinking straws, food wrappers and other debris] to build this nest.” Ave giggles. “And there are like a million sticks in here!”

“A million?” I echo.

“Maybe more!” Ave theorizes.

This moment gives me a valuable insight into Ave’s nascent number sense. Connecting numbers to quantities is a skill that will continue to emerge and evolve with age and brain development.

“The bird added string—and look at this piece of wire she wove in!” shares Maya. “It’s lightweight but very strong. How long does it take her to make this nest? I think this nest is smaller than the others we have.”

This is how we set our curriculum for the day—by following the interests of the children. When we return to our indoor classroom, we will dig out our books to learn more about the various engineering practices that local birds use to build their homes and compare this newest nest to the others in our collection.

Living along the Mississippi River as we do, we are blessed with the return of our beloved bald eagles each winter and spring. From December to March, these magnificent birds migrate south from Canada and often make our area their winter home. Some even like it so much that they make it their permanent home.

In the fall and winter, the eagles rebuild their nests to prepare for the hatching of the eaglets. Eagles nesting in our area typically lay their eggs in mid-to-late February, and the eggs hatch by mid-to-late March.

Once the eggs have hatched, the female stays with the eaglets while the male leaves to find food for the female and her hatchlings.

The eaglets grow quickly and are ready to fly—or “fledge”—by late May or early June. A number of webcams have been set up by organizations in the area so that we can watch the life cycle of the eagles playing out before our eyes.

This is where I struggle. We are a screen-free environment. I know that we can link to so much learning with technology. I know that I need to stop being so stubborn. I am that old-school playground leader who hasn’t embraced the many educational benefits of 21st-century technologies.

We weren’t always screen-free—and I have fond memories of the year when we observed a wee bit of eagle life via webcam.

I hated the screen, but I loved learning about our local eagles. When an eagle brought a large fish to the nest, we were spellbound. But the fact that we’d been sucked into spending time staring at a screen contradicted everything that I believed in regarding early education—and I was overcome with guilt.

So when the first warm day of spring arrived, we created our own eagle’s nest in the center’s outdoor play area.

“Declan, how big is an eagle’s nest?” I asked, measuring tape in hand.

“Seven feet wide,” he responded. “What are you doing?”

I quickly measured out seven feet and put a heavy rock from the rain garden on the spot. The children began adding rocks until we had a circle that was seven feet in diameter.

For a few minutes, the children pretended to be eagles living in a happy little rock nest—until one perspicacious preschooler called me out.

“Wait! This isn’t a nest!” Asa declared. “We need to add sticks and leaves and yarn. We need more!”

“We do need branches and sticks!” agreed four-year-old Joshua.

“Over here!” directed two-year-old Gabe.

Game on! Now we were learning, creating and analyzing. We’d taken what we’d learned during our screen time and translated it into real-life, hands-on learning that met so many of the math and science standards that they would struggled to achieve on a worksheet!

This was when we grabbed our books and discovered that an eagle has a wingspan of 6-8 feet. We also learned that a mature eagle has 7,000 feathers, weighs 8-11 pounds and has vision so keen that it can see the print on a newspaper at a distance equal to the length of a football field. These are the details that young children are likely to absorb.

Because bald eagles are most active from sunrise to 11 a.m. as they feed along the open water of our locks and dams, this coincides quite well with our outdoor times. Lucky for us, they return to their roosting areas in the afternoon hours.

After lunch, some time spent browsing through eagle books and a nap, the boys made their way back out to their new eagle’s nest. If they build it, they will play in it. They had been playing there for a good long time when, sure enough, up in the sky, an eagle appeared!

Yes, a  real live eagle! Would she think this was HER nest? Could she see the boys in HER nest?

As the boys contemplated the possibility of the eagle swooping down and landing amongst them, they scrambled out of their nest in pure terror.

The eagle did not land in our nest. But, sadly, our frightened little learners never returned. I left the nest in place for over a week, and some of the younger children played in it, but the boys who built it kept their distance!

I often find that most of the fun is in the building phase of the project. The collaborating, creating, adding, subtracting, analyzing and evaluating with friends is actually the play for building kids. This is the good stuff that happens with play; enough time to engage in deep, investigative learning; and, sometimes, just the right amount of technology.

Take time to follow the lead of your students and see where their interests and curiosity take you. Then match their learning up with your early learning standards.

This link will take you to the Arconic Eagle Cam.

Full disclosure: The male eagle will bring food back to the nest. This could be a raccoon, a fish or a mouse. It is nature. It is graphic. It can be addicting or terribly uneventful at any given moment!

When we build nests of our own, we often use this Scientific American site as a reference. But if you’ve lingered too long on the Arconic Eagle Cam link provided above and feel guilty about overdoing the screen time, you can just WING it—pun intended!

Ha! Let’s get outside and play.

]]>
https://earlymathcounts.org/nest-building-is-stem-building/feed/ 6 12407
STEM in the Bird Feeder https://earlymathcounts.org/stem-in-the-bird-feeder/ https://earlymathcounts.org/stem-in-the-bird-feeder/#comments Wed, 10 Feb 2021 13:36:53 +0000 http://earlymathcounts.org/?p=91868

“I see the daddy cardinal, do you know where the mama bird is?” Four-year-old Noah, binoculars in hand, is busy counting birds in our outdoor classroom.

Are you aware that the annual Great Backyard Bird Count is coming up later this week? This is a great opportunity to create a bird-watching station and knock out some STEM and early learning standards while encouraging family involvement.

Mark your calendars for Feb 12-15 and join us for this fun and educational week!

February and March are good months for bird watching and bird counting in our program. This is a great way to accelerate STEM learning on days when below-zero wind chills make outdoor play impossible.

We have bird feeders set up right outside of our windows so that we can set up indoor bird-watching stations to give the children close-up views of their feathered friends.

We provide clipboards, books, binoculars and our abacus to help with the bird count. We also use this opportunity to teach our students how to tally on a tally chart. We reference the eBird website, which shares local sightings of different bird species.

I take the top ten birds sighted in our area on the eBird website and add pictures of those birds to our abacus. To do the same thing, just add your location to the eBird website and you’ll see which birds are sighted most often in your area. It’s quite fabulous!

We also like The Cornell Lab and the Audubon Society. I have the Cornell Lab Merlin Bird ID app on my phone to help us identify birds by their songs.

Your local U.S. Fish and Wildlife Service may also be able to provide free materials for bird identification. There is a big difference between bird identification books for children and those that were written for mature bird watchers. I would check some out at your local library or bookstore before purchasing.

This is a great opportunity to practice not only counting, but grouping by attributes or close observation of the differences between a downy woodpecker and a red-bellied woodpecker.

We try to keep a ruler nearby for our older children to use to determine whether they have spotted a six-inch downy woodpecker or a nine-inch hairy woodpecker. This offers the children an opportunity to use estimation and practice using real tools for observation.

This is also a great time to introduce Venn diagrams for clarification and documentation.

By creating a comfortable and inviting place for the children to birdwatch—complete with pillows, chairs and tables with baskets of binoculars—you can encourage them to slow down and observe more often.

By planting native plants in your outdoor classroom, you will also attract more birds to your bird-watching stations.

We remind our kids that outdoor birds are hard to spot but easy to hear. We ask them to close their eyes and point to where the song is coming from. I like to teach common mnemonics like the American Robin’s cheery up, cheerio, which can be picked up on almost any bird walk in the United States. Learn some mnemonics for common birdsongs here.

We have tried the inexpensive plastic binoculars from school-supply stores and toy aisles. They really didn’t work well and broke the same day that we brought them out. Smaller, child-sized binoculars are much easier for little hands to manage. Children enjoy using “real” tools and will treat them with much more respect than a pair of cheap plastic ones. I often teach them how to focus the binoculars to get a clear image. I place these binoculars in a basket, along with the identification books. We also stock our bookshelves with a wonderful collection of books about birds, nests and hatchlings.

We talk so much about STEM these days. This is one of the easiest and most magical ways to create a learning hub that can inspire young learners to engage in STEM exploration and discovery.

By participating in these learning adventures, you can learn right along with the children as you observe, ask questions, draw conclusions and discuss your findings with your early learners.

When we observe birds from our indoor birdwatching stations and then take those same observational skills outdoors, we have a deeper understanding of the birds we see and the birdsong we hear.

By adding the technology from the websites mentioned above and building bird feeders from oranges or peanut butter and seeds, we can include engineering in our learning adventures. We can include math as we count the number of birds arriving at the feeder and then subtract the birds that fly away. By grouping, measuring and comparing the birds, we can meet our early learning standards and benchmarks.

I hope you will join us in our Great Backyard Bird Count this year. Birds of a feather flock together. Come join the fun!

]]>
https://earlymathcounts.org/stem-in-the-bird-feeder/feed/ 3 91868
Squirrely STEAM Learning https://earlymathcounts.org/steam-learning-with-squirrel-traps/ https://earlymathcounts.org/steam-learning-with-squirrel-traps/#comments Tue, 03 Nov 2020 13:10:30 +0000 http://earlymathcounts.org/?p=13116 “If the squirrel comes down from this direction, we can trap him under here!” yells Elliot. The playground equipment sits empty as Elliott, Harper and their fellow “squirrel trappers” congregate at the base of a towering oak tree in our neighborhood park.  The children have long been captivated by this venerable old oak, which has […]]]>

If the squirrel comes down from this direction, we can trap him under here!” yells Elliot.

The playground equipment sits empty as Elliott, Harper and their fellow “squirrel trappers” congregate at the base of a towering oak tree in our neighborhood park. 

The children have long been captivated by this venerable old oak, which has served as a stimulating “natural laboratory” for many mathematical and scientific inquiries disguised as play.

Today’s outdoor learning adventure may look like a simple game of make-believe, but complex learning is taking place as the children use their creativity, observation, planning and problem-solving skills—along with their emerging knowledge of math and science—to construct a squirrel trap at the base of their beloved tree.           

“Wait! Wait! Are you trapping…Miss Suzy?”

Five-year-old Maya sounds slightly panicked as she blurts out the question. The urgency in her voice catches the squirrel trappers’ attention.

A booklover with a fertile imagination, Maya is worried about the beloved squirrel featured in our favorite fall book, Miss Suzy, by Miriam Young. This captivating story about a gray squirrel whose cozy home is invaded by a group of six red squirrels has been in our library since day one. If you haven’t read this classic, see if you can find it in your library. It’s an oldie, but a goodie. We have been reading this book to the children in our program for more than 30 years. Every autumn, without fail, I will hear a child say, “Hello Miss Suzy” to every squirrel we see. This charming literary tradition has been passed down through decades and generations in our Under the Gingko Tree Nature Classroom program!

We aren’t trapping her, we are trapping the red squirrels,” the boys reassure Maya.

Relieved and intrigued, Maya joins the squirrel-trap design team. Soon, colorful leaves, acorns and other small seeds make their way into the trapping area. The older boys are shouting out orders to the younger trappers. “We need some sticks—about this long!” Elliott declares, using his hands to indicate the length of the sticks that will be needed. “And bark! We need some bark!”

The younger girls wander over to other tree trunks and begin to use their collections to create cozy squirrel homes like Miss Suzy’s. They seem content to leave the squirrel trapping to the boys. Three-year-old Lauren makes a squirrel nest by arranging pine cones in a circle on a bed of pine needles. From observing the upper branches of the tall trees that surround our school, Lauren knows that squirrel nests are round and full of leaves, acorns and possibly pine cones. These hands-on investigations are authentic learning experiences that the girls will remember and build on as they continue to hone their problem-solving skills.

Four-year-old Ava, our loose-parts aficionado, creates a home design all her own, using bark for the beds and acorns to represent the squirrels’ heads. She repurposes the acorn caps as bedside water bowls. Another acorn cap filled with tiny seeds and nuts becomes a food bowl for late-night snacking next to a “crackling campfire” consisting of a red leaf topped with stacked twigs. A green leaf becomes a staircase that the squirrels will use to exit their comfy abode.

We could knock out early learning standards galore just by studying the photo below! We find these delightful little creations all over our school grounds.

This fall, open the door to the possibility of using nature to create authentic, engaging and accessible science and math experiences through outdoor play. Throw away your “curriculum” stopwatch. If it’s snack time, hand out the snacks. Let them eat like pirates for the day. No one will die. No one will call the teacher police. If they do, I want you to whip out your school’s list of early learning standards and state your case. You hold the key! Let’s take play back for this generation of early learners! The fresh air will do us all good this fall. Stay safe, friends—and don’t forget to make time for learning through play!

]]>
https://earlymathcounts.org/steam-learning-with-squirrel-traps/feed/ 5 13116
Baby Brains and Math- The Concept of More https://earlymathcounts.org/baby-brains-and-math-the-concept-of-more/ https://earlymathcounts.org/baby-brains-and-math-the-concept-of-more/#comments Tue, 12 Jul 2016 11:00:00 +0000 http://www.mathathome.org/blog1/?p=954 When our first child was born, my husband was studying special education at the University of Illinois-Chicago.  He became very interested in using sign language to communicate with non-verbal students so he began studying it.  When Noah came along, Larry was convinced that we could communicate better with him if we gave him “language” before he could produce oral language.

One of the first mathematical concepts that infants begin exploring is the concept of “more.”  That was the first sign language Noah learned.  He learned how to say “more,” ask for “more,” and respond to “more.”  This simple sign became his first way of communicating with us, confidently expressing his needs.  This concept of “more”is one of the basic foundations of quantity.

Simply bring your thumbs up to the other four fingers and tap both hands together while saying or asking, “more.”  You will be amazed how quickly an infant will learn to mimic the movements (if not exactly, fairly close) and then use the language appropriately.

]]>
https://earlymathcounts.org/baby-brains-and-math-the-concept-of-more/feed/ 5 954
Cuisenaire® Rods https://earlymathcounts.org/cuisenaire-rods/ https://earlymathcounts.org/cuisenaire-rods/#comments Mon, 31 Aug 2015 11:00:31 +0000 http://www.mathathome.org/blog1/?p=379 There are few manipulatives out there that are as interesting and beautiful as a wooden set of Cuisenaire® Rods.  Developed 75 years ago by Belgian teacher Georges Cuisenaire these “rods” come in beautiful colors in varying lengths.

The units are color-coded which provides additional visual cues for children. If you look carefully at the above photo, you can see that the units of 1 are white and the units of 2 are red, units 3 are green and so on.  When using them with children, you can refer to the lengths by their unit number as well as their color.

Unlike Unifix cubes, traditional Cuisenaire ® Rods do not attach to one another (although there are sets that do attach).  This provides a different set of possibilities for children as their uses may be less obvious and may require a bit more ingenuity.

A few weeks ago, I wrote about the “trading game” that is played with the family bear counters. Well, a more developed “trading game” can be played with the rods since each of the rods has a specific value.  White is worth 1 and red is worth 2 and green is worth 3.  In order to get a green rod, children must trade 3 whites, or 1 white and 1 red.  Give this a try and tell us what you think.

]]>
https://earlymathcounts.org/cuisenaire-rods/feed/ 5 379